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端午安康！

Wish you health and a peaceful Dragon Boat Festival.

2023 年 6 月 22 日
农历五月初五

June 22, 2023

The 5th Day of the 5th Lunar Month
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Left cancellative small categories

A small category C is left cancellative if for all 𝑐, 𝑥, 𝑦 ∈ C with
t(𝑥) = t(𝑦) = d(𝑐),

𝑐𝑥 = 𝑐𝑦 =⇒ 𝑥 = 𝑦.

Let 𝑎, 𝑏 ∈ C be two elements in a left cancellative small category. If
there exists an element 𝑐 ∈ C such that 𝑎 = 𝑏𝑐, then we say that 𝑏
is a left divisor of 𝑎, written as 𝑏 ⪯ 𝑎.
If 𝑐 ∈ C∗, we say that 𝑎 =∗ 𝑏 and =∗ is indeed an equivalence
relation.
Proposition
Let C be a left cancellative small category. Then we have

𝑎 =∗ 𝑏 ⇐⇒ 𝑎 ∈ 𝑏C∗ ⇐⇒ 𝑎C = 𝑏C ⇐⇒ 𝑏 ∈ 𝑎C∗ ,

and hence 𝑎 ⪯ 𝑏, 𝑏 ⪯ 𝑎 ⇐⇒ 𝑎 =∗ 𝑏.
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Garside theory

Proposition (An equivalent definition for greediness)
Let C be a left cancellative small category and 𝑆 ⊆ C be a
subfamily. A length-two path 𝑔1 |𝑔2 is 𝑆-greedy if and only if each
relation 𝑠 ⪯ 𝑔1𝑔2 with 𝑠 ∈ 𝑆 implies that 𝑠 ⪯ 𝑔1.
A path 𝑔1 | · · · |𝑔𝑝 is 𝑆-greedy if and only if each relation
𝑠 ⪯ 𝑔𝑞 · · · 𝑔𝑟 with 𝑠 ∈ 𝑆 implies that 𝑠 ⪯ 𝑔𝑞 for every
1 ≤ 𝑞 < 𝑟 ≤ 𝑝.

Definition (Garside family)
Let C be a left cancellative small category. A subfamily G of C is
called a Garside family if every element of C admits at least one
G-normal decomposition.
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The subspace Ω of 𝐽

Let 𝐽 be the space of characters on 𝐽. The subspace Ω of 𝐽 is defined
as follows:
Ω consists of characters 𝜒 : 𝐽 → {0, 1} with the property that
whenever 𝑒 , 𝑓1 , . . . , 𝑓𝑛 ∈ 𝐽 satisfy 𝑒 = ⋃𝑛

𝑖=1 𝑓𝑖 as subsets of C, then
𝜒(𝑒) = 1 implies that 𝜒( 𝑓𝑖) = 1 for some index 𝑖.
The topology on Ω is the subspace topology from 𝐽.
Given 𝑠 ∈ 𝐼𝑙 and 𝜒 ∈ 𝐽 with requirement that 𝜒(𝑠−1𝑠) = 1, we
define the action of 𝑠 on 𝜒 as another character 𝑠.𝜒 : 𝐽 → {0, 1}
by (𝑠.𝜒)(𝑒) = 𝜒(𝑠−1𝑒𝑠).
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Groupoid models for the left reduced C*-algebras
Left reduced C*-algebras for the small category C

Let C be a left cancellative small category and C denotes the space of complex
numbers. Define the ℓ2(C) space to be ℓ2(C) =

{
𝑓 : C → C

��� ∑𝑐∈C | 𝑓 (𝑐)|2 < ∞
}

with the “well-known” inner product. The standard orthonormal basis of ℓ2(C)
is given by {𝛿𝑥}𝑥∈C, where 𝛿𝑥 : C → C, 𝛿𝑥(𝑦) =

{1 if 𝑦 = 𝑥,

0 if 𝑦 ≠ 𝑥.

For each 𝑐 ∈ C, we define a partial isometry 𝜆𝑐 by assigning 𝛿𝑥 ↦→ 𝛿𝑐𝑥 if
t(𝑥) = d(𝑐) and 𝛿𝑥 ↦→ 0 if t(𝑥) ≠ d(𝑐) and extending by linearity on ℓ2(C).
Definition (Left reduced C*-algebra of a left cancellative small
category)
The left reduced C*-algebra of C, denoted by 𝐶∗

𝜆(C), is defined by
the C*-algebra generated by the partial isometries {𝜆𝑐}𝑐∈C.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

. .Left Cancellative Small Categories
. .Garside Theory

. .. .. .. .Groupoid Models and Characters
. .. .. .. .. .. .. .. .. .Main Results

. .. .. .. .. .. .Application: Higher-rank Graphs References References
. .. .Acknowlegements

Groupoid models for the left reduced C*-algebras
The transformation groupoid and its variation

The transformation groupoid 𝐼𝑙 ⋉ Ω and its variation 𝐼𝑙⋉̄Ω are
defined to be the collection of equivalence classes on the set

𝐼𝑙 ∗Ω := {(𝑠, 𝜒) ∈ 𝐼𝑙 ×Ω : 𝜒(𝑠−1𝑠) = 1}.
For 𝐼𝑙 ⋉Ω, the equivalence relation ∼ is given by
(𝑠, 𝜒) ∼ (𝑡 ,𝜓) ⇐⇒ 𝜒 = 𝜓 and there exists an 𝑒 ∈ 𝐽 with 𝜒(𝑒) = 1 and 𝑠𝑒 = 𝑡𝑒.

For 𝐼𝑙⋉̄Ω, the equivalence relation ∼̄ is given by
(𝑠, 𝜒)∼̄(𝑡 ,𝜓) ⇐⇒ 𝜒 = 𝜓 and there exists an 𝜀 ∈ 𝐽 with 𝜒(Id𝜀) = 1 and 𝑠 Id𝜀 = 𝑡 Id𝜀 .

Groupoid structure:
- the source map s([𝑠, 𝜒]) = 𝜒 and the range map r([𝑠, 𝜒]) = 𝑠.𝜒;
- multiplication [𝑠, 𝑡.𝜒][𝑡 , 𝜒] = [𝑠𝑡, 𝜒];
- inversion [𝑠, 𝜒]−1 = [𝑠−1 , 𝑠.𝜒].
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The character from an element

Definition (The Character from an element)
Given 𝑥 ∈ C, we define 𝜒𝑥 : 𝐽 → {0, 1} by

𝜒𝑥(𝑒) =
{
1, if 𝑥C ⊆ 𝑒 ,

0, otherwise.

Observation: 𝜒𝑥 = 𝜒𝑦 if and only if 𝑥C = 𝑦C.

Lemma
{𝜒𝑥 : 𝑥 ∈ C} is dense in Ω with respect to the pointwise-convergence topology.
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The character from an infinite path

Let 𝑤 = 𝑠1 |𝑠2 | · · · be an infinite path. We define 𝑤𝑛 := 𝑠1 · · · 𝑠𝑛 for
the product of first 𝑛 elements of 𝑤.

Definition (Character from an infinite path)
Let 𝑆 be a subfamily of C which generates C. For an (infinite)
𝑆-path 𝑤, we define a map 𝜒𝑤 : 𝐽 → {0, 1} by

𝜒𝑤(𝑒) =
{
1, if 𝑤𝑛 ∈ 𝑒 for some 𝑛 ∈ N+ ,
0, otherwise.

Let 𝑆 be a subfamily of C generating C. We see that for every
𝑥 ∈ C, 𝜒𝑥 is actually the character from a finite path.
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Let Ω∞ = Ω \ {𝜒𝑥 : 𝑥 ∈ C}.
Lemma ♣
Let C be a finitely aligned left cancellative small category which is
also countable. Let 𝑆 be a subfamily of C generating C.
Then every 𝜒 ∈ Ω∞ is of the form 𝜒𝑤 for some infinite 𝑆-path.
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Standard assumption

• C is a finitely aligned, countable, left cancellative small
category;

• G is a Garside family of C which is =∗-transverse,locally
bounded, and G ∩ C∗ = ∅.

Definitions:
Let C be a small category.
A subfamily 𝑆 of C is said to be =∗-transverse if 𝑎 =∗ 𝑏 implies that 𝑎 = 𝑏
for all 𝑎, 𝑏 ∈ 𝑆.
A subfamily 𝑆 of C is said to be locally bounded if for every v ∈ C0 there
is no infinite sequence 𝑠1 , 𝑠2 , . . . in v𝑆 with 𝑠1 ≺ 𝑠2 ≺ · · · .
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Given two 𝑆-paths 𝑥 = 𝑠1 |𝑠2 | · · · and 𝑦 = 𝑡1 |𝑡2 | · · · we mean 𝑥 = 𝑦
by requiring 𝑠𝑖 = 𝑡𝑖 for all indices 𝑖. In the case of finite paths, we
also require that their lengths are the same.

Theorem ♠
Let C be a finitely aligned countable left cancellative small
category. Let G be a Garside family of C which is =∗-transverse,
locally bounded, and G ∩ C∗ = ∅. Then every
𝜒 ∈ Ω \ {𝜒v : v ∈ C0} is of the form 𝜒𝑝 for some G-normal path
𝑝. Moreover, such a path is unique, in the sense that for two
normal paths 𝑝 and 𝑞, 𝜒𝑝 = 𝜒𝑞 if and only if 𝑝 = 𝑞.

Let 𝒲 be the collection of all G-normal paths, then the above
theorem gives a one-to-one correspondence between paths in𝒲⊔C0

and characters in Ω given by 𝑤 ↦→ 𝜒𝑤 , v ↦→ 𝜒v.
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Admissible pairs, 𝐻-invariance, max∞⪯ -closeness

Let C be a left cancellative small category and G be a (nontrivial)
Garside family.
Also let I be a subfamily of G and D be a subfamily of C0.

(i) The pair (I,D) is called admissible if for all 𝑡 ∈ I, either there
is a 𝑡′ ∈ I such that the path 𝑡 |𝑡′ is G-normal or d(𝑡) ∈ D.

(ii) (I,D) is called 𝐻-invariant if for all 𝑎 ∈ C\C∗ and 𝑥 ∈ I ∪ D
with d(𝑎) = t(𝑥), 𝐻G(𝑎𝑥) lies in I.

(iii) (I,D) is called max∞⪯ -closed if for every sequence {𝑡𝑖}𝑖 in I, if
lim𝑖 𝑡𝑖 exists in G, then lim𝑖 𝑡𝑖 ∈ I ∪ D.
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Definitions:
- Let 𝑆 be a subfamily of C. Given 𝑎 ∈ C, an element 𝑠 ∈ 𝑆 is known as
an 𝑆-head of 𝑎 if 𝑠 is a greatest left divisor of 𝑎 is 𝑆.

Lemma (Dehornoy et al. 2015)
If G is a Garside family of C, then every non-invertible element 𝑎 admits
a G-head.

In the case that 𝑆 is =∗-transverse, the 𝑆-head is unique if it exists. In this
case, the 𝑆-head of an element 𝑎 ∈ C is denoted as 𝐻𝑆(𝑎). We may also
omit 𝑆 and write 𝐻(𝑎) instead when it is clear in the context.
- For a sequence {𝑠(𝑖)} in G and an element 𝑠 ∈ G∪C0, we write lim𝑖 𝑠(𝑖) =
𝑠 if 𝑠 is the greatest element with respect to ⪯ among the set

{𝑟 ∈ G ∪ C0 : 𝑟 ⪯ 𝑠(𝑖) for all but finitely many 𝑖}
in the sense that 𝑠 ⪯ 𝑠(𝑖) for all but finitely many 𝑖, and every element 𝑟
left dividing 𝑠(𝑖) is also a left divisor of 𝑠.
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Theorem ♠ implies also that there is a bijective correspondence be-
tween subsets of Ω and subsets of 𝒲 ⊔ C0.
Definitions
• Given 𝑋 ⊆ Ω, let 𝒱(𝑋) = {𝑤 ∈ 𝒲 , v ∈ C0 : 𝜒𝑤 , 𝜒v ∈ 𝑋}. We

define

I(𝑋) = {𝑡 ∈ G : 𝑡 = 𝑣=𝑖 for some 𝑣 ∈ 𝒱(𝑋) ∩𝒲 and 𝑖 ∈ N+}
and

D(𝑋) = 𝒱(𝑋) ∩ C0 = {v ∈ C0 : 𝜒v ∈ 𝑋}.
• Let I be a subfamily of G and D be a subfamily of C0. Define

𝑋(I,D) = {𝜒𝑣 : 𝑣=𝑖 ∈ I,∀𝑖 ∈ N+} ∪ {𝜒v : v ∈ D}.
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Main theorem

Theorem
There is an inclusion preserving one-to-one correspondence:

{(𝐼𝑙 ⋉Ω)-invariant closed subspaces of Ω} −→ {
admissible, 𝐻-invariant max∞⪯ -closed pairs

}
𝑋 ↦−→ (I(𝑋),D(𝑋))

𝑋(I,D) ↦−→(I,D)

with I ⊆ G and D ⊆ C0.
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A subfamily 𝑆 of C is said to be locally finite if v𝑆 is finite for all v ∈ C0. If further G
is locally finite, then every pair (I,D) is automatically max∞⪯ -closed.

Theorem
Let C be a finitely aligned countable left cancellative small
category and G is a Garside family of C which is =∗-transverse,
locally bounded and G ∩ C∗ = ∅. Then we have the following:
• The transformation groupoid 𝐼𝑙 ⋉Ω is a groupoid model for

the left reduced C*-algebra 𝐶∗
𝜆(C).

• There is an inclusion preserving one-to-one correspondence
between 𝐼𝑙 ⋉Ω-invariant closed subspaces of Ω and admissible,
𝐻-invariant max∞⪯ -closed pairs (I,D) with I ⊆ G and D ⊆ C0.

• If further G is locally finite, then the max∞⪯ -closeness
condition can be removed.
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Higher-rank graphs

Definition (Graph of rank 𝑘)
Let 𝑘 be an nonnegative integer. A graph of rank 𝑘 (also called a
𝑘-graph) is a countable small category E equipped with a degree functor
d : E → N𝑘 satisfying the following unique factorization property:
For all 𝑒 ∈ E and 𝑚, 𝑛 ∈ N𝑘 with d(𝑒) = 𝑚 + 𝑛, there are unique
elements 𝑢 ∈ d−1(𝑚) and 𝑣 ∈ d−1(𝑛) such that 𝑒 = 𝑣𝑢.

We often call a graph of rank 𝑘 a higher-rank graph when 𝑘 ≥ 2. N𝑘 has a natural
partial order ≤.

Basic properties of higher-rank graphs:
(i) d−1(0) = {idv : v ∈ E0} = E0.
(ii) E∗ = E0.
(iii) Let 𝑎, 𝑏 ∈ E. Then 𝑎 =∗ 𝑏 if and only if 𝑎 = 𝑏 (and thus ⪯ is really a

partial order).
(iv) The degree functor d preserves order.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

. .Left Cancellative Small Categories
. .Garside Theory

. .. .. .. .Groupoid Models and Characters
. .. .. .. .. .. .. .. .. .Main Results

. .. .. .. .. .. .Application: Higher-rank Graphs References References
. .. .Acknowlegements

Now we need to answer the following questions:

(Q1) Does a higher-rank graph possess left cancellative property?
(Q2) If so, what can be its Garside family?
(Q3) What do the results obtained previously mean for higher-rank

graphs?
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Answer to (Q1)

A higher-rank graph indeed possesses left cancellative property.

Proposition
Let E be a graph of rank 𝑘. Then E is both left and right
cancellative.

Proof. Let 𝑣, 𝑢, 𝑤 ∈ E such that 𝑣𝑢 = 𝑣𝑤, we set out to verify that
𝑢 = 𝑤. Actually we have d(𝑣𝑢) = d(𝑣) + d(𝑢) and d(𝑣𝑤) = d(𝑣) + d(𝑤).
Then the identity d(𝑣) + d(𝑢) = d(𝑣) + d(𝑤) with unique factorization
property implies that 𝑢 = 𝑤. This means E is indeed left cancellative.
The same argument shows that E is indeed right cancellative.
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Answer to (Q2)
Let E be a graph of rank 𝑘. Let 𝑆𝑝 = {0, 1}𝑘 \ {(0, . . . , 0)} be the set
𝑘-tuples whose components are only 0 or 1, without the zero tuple. Then

G := d−1(𝑆𝑝)
is a Garside family of E.
Moreover, G has the following properties:

- G is =∗-transverse;
By basic property (iii), E itself is already =∗-transverse.

- G is locally bounded;
For any v ∈ E0, if there were an infinite strictly increasing sequence
idv 𝑠1 ≺ idv 𝑠2 ≺ · · · in idv G then d(idv 𝑠1) ≺ d(idv 𝑠2) ⪯ · · · is an infinite
strictly increasing sequence in 𝑆𝑝 since d(idv 𝑠𝑖) = d(idv) + d(𝑠𝑖) = d(𝑠𝑖) and
d(idv) = 0. However, there cannot exist any infinitely increasing sequence in 𝑆𝑝
because the greatest element in it is (1, 1, . . . , 1).

- G ∩ E∗ = ∅.
By basic properties (i) and (ii), d(E∗) = {0}.
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Characterization of admissible pairs, 𝐻-invariance and max∞⪯ -closeness
in a higher-rank graph

Lemma (Li 2022)
Let E be a graph or a higher-rank graph with the Garside family G defined
above. Let I be a subfamily of G and D be a subfamily of E0.
• The pair (I,D) is admissible if and only if

(A) for every 𝑡 ∈ I there exists a 𝑡′ ∈ I with d(𝑡′) ≤ d(𝑡) or d(𝑡) ∈ D.
• (I,D) is 𝐻-invariant if and only if

(I) for every 𝑡 ∈ I ∪ D and every atom 𝑎 with d(𝑎) = t(𝑡) if d(𝑎) ≰ d(𝑡)
then 𝑎𝑡 ∈ I, and if d(𝑎) ≤ d(𝑡) and 𝑡 = 𝑟𝑠 with d(𝑠) = d(𝑎) then 𝑎𝑟 ∈ I.

• (I,D) is max∞⪯ -closed if and only if
(C) for every sequence {𝑎𝑧𝑖}𝑖 with a fixed 𝑎 ∈ G ∪ E0 and d(𝑧𝑖) = 𝑑 ∈ N𝑘
a constant tuple, if whenever 𝑒 ⪯ 𝑑 is a standard basis element of N𝑘 and
𝑠𝑖 ⪯ 𝑧𝑖 satisfies d(𝑠𝑖) = 𝑒 we must have 𝑠𝑖 ≠ 𝑠 𝑗 for all 𝑖 ≠ 𝑗, then
𝑎 ∈ I ∪ D.

An element 𝑔 of a left cancellative category C is called an atom if 𝑔 is not invertible
and 𝑔 is not a product of two non-invertible elements.
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Answer to (Q3)

Theorem (Farthing et al. 2005)
The transformation groupoid of a higher-rank graph E is a
groupoid model for the Toeplitz-Cuntz-Kriger algebra 𝒯𝐶∗(E) of
E.

Theorem
Let E be a countable finitely aligned higher-rank graph, with the Garside family
G = d−1(𝑆𝑝) and let 𝐼𝑙 ⋉Ω be the corresponding transformation groupoid.
Then 𝐼𝑙 ⋉Ω is the groupoid model for the Toeplitz-Cuntz-Kriger algebra of E,
and there is an inclusion preserving one-to-one correspondence:

{(𝐼𝑙 ⋉Ω)-invariant closed subspaces of Ω} −→ {pairs satisfying conditions (A), (I) and (C)}
𝑋 ↦−→ (I(𝑋),D(𝑋))

𝑋(I,D) ↦−→(I,D)

with I ⊆ G and D ⊆ C0.
If further G is locally finite, then the condition (C) can be removed.
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