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These are notes for the course Introduction to Representation Theory held
in 2022/23. Most of this is based on the books [Vinb| and [Stein]. The text will
be expanded throughout the term. Note that the text is not proofread, so be
careful when using it! I’'m of course happy to here about typos and mistakes
you find, and I’d appreciate if you could send any errors you notice (or other
comments you might have) to matz@math.ku.dk.

1 Basic Definitions

Our general setup will be as follows:
e (G is a group; very soon we will impose some additional conditions on G
e K is a field; we will usually assume that K =R or K =C
e V is a finite dimensional vector space over K.
We will write GL(V) for the group of invertible linear endomorphisms V" — V.

Remark 1.1. o The restriction to K € {R, C} is usually not essential, but can be conve-
nient to avoid having to deal with some exceptional cases. As long as the characteristic
of K is 0 (and K is algebraically closed if necessary) most results will carry over.



o The assumption that V s finite dimensional is more critical as infinite dimensional
representation theory is significantly more involved.

Initially, we define two notions of a representation:

Definition 1.2. A linear representation of G on V (over K) is a group homomorphism
m: G — GL(V).

We will usually denote this representation by (7, V') or just by 7 if V' is understood from the
context.

e V is called the representation space of .
o dimy V =: dim7 =: deg 7 is called the degree (or dimension) of 7.

Definition 1.3. Let n € N. A matriz representation of G over K of dimension (or degree)
n is a group homomorphism

m: G — GL,(K).

Remark 1.4. Given a matriz representation m : G — GL,(K) we can canonically attach
a linear representation by using the canonical isomorphism of groups GL,(K) — GL(K™)
given via the standard basis {ei,...,e,} of K™.

Conversely, given a linear representation m : G — GL(V) and a basis B = {vy,...,v,}
of V over K, we can attach a matriz representation 7 : G — GL,(K) ~ GL(K"™) (the
last isomorphism is the canonical one from before) which satisfies

m5(9)e; = wi(m(g)vy)

where pp : V. — K™ is the isomorphism characterized by pp(v;) = e;, i = 1,...,n. In other
words, mp(g) is the matriz (a;;)i j=1...n such that

n
W(g)?)j = Zaijvj.
i=1
This matriz representation depends on the choice of basis. To make this construction more

‘canonical’ we introduce the notion of equivalence next.

Definition 1.5. e Let (m, V1), (m2, V5) be two linear representations of a group over the
same field K. We call m; and 7 equivalent, written as (my, V) =~ (mg, V3), or simply
m =~ Ty, if there exists a vector space isomorphism @ : V; — V5 such that

T1(g) = @ ' om(g) o ®

for all g € G.



o If m : G — GL,,(K), m : G — GL,,(K) are two matrix representations of G,
we call m; and 7y equivalent, denoted by m; =~ m,, if ny = ny =: n and there exists
A € GL,(K) such that

mi(g) = A m(g)A
for all g € G.

Note that equivalence of (linear or matrix) representations is an equivalence relation on
the set of all (linear or matrix) representations.

Lemma 1.6. Let (m,V) be a linear representation of G, and let By, By be two bases for V.
Then Tp, ~ T3,.

Conversely, if m, mo are two equivalent matriz representations of G, the corresponding
linear representations on K™ are then equivalent as well.

Proof. The second assertion is immediate from the above definitions. For the first assertion
note that the equivalence of 7, and 7, will be realized by the base change matrix that
changes B to Bs. ]

Remark 1.7. This lemma therefore implies that we have a bijection between the set of
equivalence classes of matriz representations of G over K and the set of equivalence classes
of linear representations of G over K given by the maps above.

Convention: We'll usually only be interested in linear or matrix representations up to
equivalence as all important properties are preserved under equivalency. We will therefore
in the following often not distinguish between linear and matrix representations, and just
speak of representations of G.

1.1 Examples

Example 1.8 (One-dimensional representations of R). Let K = R or K = C. Suppose
a € K. Then
To : R — GL1(K) = KX, mo(t) := ™

defines a one-dimensional representation of the additive group R.

In fact, if we assume that the representation 7 : R — K is differentiable, these are
all possible one-dimensional representation. (Here by a ’differentiable representation’ we
just understand a group homomorphism 7 : R — K* that happens to be a differentiable
function from R to K.) To see this let 7 : R — K* be a differentiable representation.
Then for all t € R,

d d ,
(e + $jomo = - (RO ($)) o = 7O (0).
We know from analysis that 7 therefore must be of the form 7 (¢) = Se®* for suitable o, 8 € K.

Since 7(0) = 1, we get 5 = 1, hence m = 7.



Example 1.9 (n-dimensional representations of R). Let K =R or K = C. For A € M, (K)
we define the matriz exponential e? by

where 1,, denotes the n x n identity matrix.
We list several properties of this matrix exponential (see [Hall, Proposition 2.3]; or you
can check these properties yourself)

e The series defining e converges absolutely for any A € M, (K) with respect to the
usual matrix norm on M, (K).

VA € M,(K): e € GL,(K)

0n _

o c 1,, where 0,, denotes the n X n zero matrix

VB € GL,(K), A € M,(K): B-'eAB = B 'AB

If A,B € M,(K) with AB = BA, then e*? = e4eP. In particular, e 4e? = 1,,, that
A is the inverse matrix of e4.

is, e~
Using these properties, we see that if A € M, (K), then
ma: R — GL,(K), ma(t) = etd

defines an n-dimensional representation of the additive group R. In fact, one can show
similarly as above that if 7 : R — GL,(K) is a differentiable representation, we can find
A € M, (K) such that 7 = m4. (Again, we understand ’differentiable representation’ in the
naive way as being a representation 7 : R — GL, (K) which at the same time happens to
be a differentiable map R — M,,(K).)

Example 1.10 (Rotations in R?). We define

m: R — GLy(R), 7(t) := (_02181(12) ig;i?))

Geometrically, the matrix ¢ represents the counterclockwise rotation by angle ¢ around the
origin in R. To see that this is in fact a representation (which can also be checked by hand
using trigonometric identities), we’ll find a matrix A € My(R) such that 7 = m4. In fact, let

A= (_01 é) .
To see that this is the correct choice, note that
A= —1,, A3=—A, A'=1,.
We can therefore compute

oA — Z A_| _ Z 0 ((;:n))n: 1, + Z %A = cos(t)1y +sin(t)A = 7 (¢).

E>0 k=2m,m> k=2m+1,m>0
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Example 1.11. Consider the symmetric group S,, on n elements. For ¢,7 = 1,...,n write
E;; € M, (C) for the matrix given by

(B}t = {1 it (i,5) = (k1)

0 else.

Define
TS, — GLn((C), 7T(0‘) = Elg(l) + ...+ Em,(n)

It can easily be seen that each of the matrices 7(o) is indeed invertible and that 7(id) = 1
To see that it defines a group homomorphism note that

E; ifj=k
E Ekl i 1]
0, else.

Hence for o, 7 € 5,, we get

ZE“’ (i) Z () = Z El‘l' Z Eirooi)y = (T 0 0)

i,j:0(i)=

so that 7 is indeed a group homomorphism.
Note that this representation can also be defined by 7 : S, — GL(C"), m(0)e; = e,())
where eq, ..., e, denotes the standard basis of C".

Example 1.12. Suppose X is a finite set, G' a group.
Recall: A group action of G on X is a map

GxX—X(g,x)—~g-x

such that e-x = z and ¢g- (h-z) = (gh) -z for all x € X, g,h € G (here e denotes the
neutral element of GG). Equivalently, a group action of G on X is a group homomorphism
G — S(G) := group of bijections X — X.

Suppose we are given a group action of G on X. Let Vx denote the K-vector space of all
(formal) linear combinations of elements in X. Then Vy is a K-vector space of dimension
| X|. In generalization of the previous example, we define

m: G — GL(Vx), 7(g) Z Ay = Z ayq - T.

zeX zeX

This is indeed a representation of G which can be checked similarly as in the previous
example.

Note that this representation is sometimes defined slightly differently: Let K[X] denote
the K-vector space of all functions X — K. Then given a group action of G on X we
define

7: G — GL(K[X])

6



by (7(g9)f)(z) :== f(g~" ) for f € GL(K[X]), z € X. 7 is in fact equivalent to 7 as can be
seen from the vector space isomorphism

KIX] —Vx, f— Zf(x)x

(In fact, 7 is the dual of 7 as will become clear later.)

Example 1.13 (Left-/right-regular representation). Let G be a group, and let C[G] denote
the C-vector space of all functions G — C. G acts on itself from the left and right, that is,
we have a left action

GxG— G, (g,x) — gz

and a right action

GxG— G, (g,7)— 29"

These induce corresponding representations on C[G| as in the previous example, namely the
left reqular representation of G

L:G — GL(C[G]), (L(g)f)(x) = f(g~"),
and the right reqular representation of G
R:G — GL(C[G]), (R(g)f)(x) = f(zg).

Note that when G is not finite one often considers the left-/right-regular representations on
slightly smaller subspaces of functions (e.g. continuous functions).

1.2 Invariant subspaces

Definition 1.14. Suppose (7, V') is a representation of a group G, and W is a subvectorspace
of V. W is called invariant (with respect to m) if

(W S W

for all g € G.
If W C V is an invariant subspace, then (7w, W) with 7w (g) := 7(g9)jw, g € G, is again
a representation of GG, and called a subrepresentation of .

Remark 1.15. o We will sometimes say that a representation (o,U) is a subrepresen-
tation of (w, V') if o is equivalent to an actual subrepresentation of .

o [f Wi, Wy are two invariant subspaces of V', then Wi N Wy and Wy + Wy are both
movariant again.

Example 1.16. Recall the representation 7 : S, — GL(C"), 7(0)e; = ey(;) from Exam-
ple 1.11. Let W =C(e; +...4+¢e,) € C". Then W is an invariant subspace, and (7, W) is
in fact equivalent to the trivial representation of S, that is, my (o) = idy for all o € S,,.
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Definition/Lemma 1.17. Suppose (m,V) is a representation of G and W C V is an
invariant subspace. We define the quotient representation my y : G — GL(V/W) by

mvyw(g)(v+ W) =m(g)v+ W.

Then (myyw,V/W) is a well-defined representation of G on V/W. Moreover, if there exists
an invariant subspace W' C'V such that V=W @ W', then myw ~ my:.

Proof. To check that my/y is well-defined, let vy, v, € V with vy +W = vy + W. Then for
all g € G,
m(g)v1 — w(g)va = 7(g)(v1 —v2) € W
since W is invariant and v; — vy € W. Hence myy is well-defined.
For the last assertion note that W/ — V/W, w' — w’ + W defines an isomorphism of
vector spaces, and carries Ty to Ty . ]

Definition 1.18. A representation (m, V) of G is called irreducible if whenever W C V is
an invariant subspace, it follows that W = {0} or W = V.

Example 1.19. Every 1-dimensional representation is irreducible.

Example 1.20. Recall the representation 7 : R — GLy(R), m(t) = (lesr(lz) zg;((g> from
Example 1.10. 7 is irreducible. To see this, suppose that this was not true, that is, there
exists a (necessarily) 1-dimensional invariant subspace W C R% Let v = (v1,v2) € R? be a

vector spanning W. Then
"= ()

which is not contained in Rv, and therefore a contradiction to our assumption.

Example 1.21. Recall the representation 7 : S,, — GL,(C) from Example 1.11. We saw
that W = C(e; + ... + e,) is an invariant subspace so that 7 is not irreducible. Define

W={zeC"|z1+...+x, =0}

Then clearly C* = W @& W', and W’ is invariant itself. Since W is 1-dimensional, the
subrepresentation (my, W) is irreducible. We now also show that (-, W’) is irreducible as
well.

For this first note that {e; — ey, €1 —e3,...,€1 — ey} is a basis of W/. Now let U C W’
be an invariant subspace, U # {0}. Let uw € U, u # 0, and write u = aje; + ... + aze,
for suitable ay,...,a, € C. Since v € W there must be 4, j, ¢ # j such that a; # a;. Let
(1j) € S, denote the permutation transposing i and j. Then

W s m((ij))u —u = aje; + ae; — (ae; + aje;) = (a; —a;)(e; —e;) #0

so that e; —e; € U. If i = 1, it follows that then also e; — e, = m((jk))(e1 —e;) € U and
thus U = W', If i # 1, we first apply 7((14¢)) to reduce to the case i = 1.
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2 Complete Reducibility and Maschke’s Theorem

2.1 Basic definitions and properties

Definition 2.1. A representation (m, V') is completely reducible if whenever W C V is an
invariant subspace, there exists an invariant subspace W’ C V such that V =W @ W’. In
other words, every invariant subspace of V' admits an invariant complement.

Example 2.2. Every irreducible representation is completely reducible. The representation
7S, — GL,(C) as above is also completely reducible.

Example 2.3. The representation

1t
m: R — GLy(C), 7(t) := <O 1>
is not completely reducible. The subspace Ce; spanned by e; in C? is clearly invariant, but
it does not have an invariant complement: If W’ is a complement of Ce; in C? it must have
dimension 1, hence W’ = Cu for some suitable v = (v, v9)t € C?, vy # 0. But then

(1) —v = (%2) ceWwnw ={0}

which is a contradiction since vy # 0.

In the next section we will prove that real and complex representation of finite or compact
groups are always completely reducible. As the last example shows, this is not necessarily
the case for other groups.

Proposition 2.4. Suppose (w,V') is a completely reducible representation of G and (my, W)
a subrepresentation of (mw,V'). Then (mw, W) is also completely reducible

Proof. Let (m,V) and (my, W) be as in the statement of the proposition. Let U C W be
an invariant subspace. Since 7 is completely reducible, there exists an invariant subspace
U' ' CVsuchthat V=U&®U’. Then W =U & (U NW) and by Remark 1.15 U'NW is also
invariant. Hence we’ve found an invariant complement to U in W so that my, is completely
reducible. O

Corollary 2.5. Suppose (m,V') is a completely reducible representation of G. Then there
exists minimal invariant subspaces Wy, ..., W, of V' such that

V=Wo...oW,.

Note that an invariant subspace W C V., W = 0, is minimal if and only if the subrepre-
sentation (my,, W) is irreducible.



Proof. Recall that we assume throughout that all our representations are finite dimensional.
If 7 is irreducible, V' is a minimal invariant subspace of itself, hence there is nothing to
show. We therefore assume that 7 is not irreducible. Let W C V' be an invariant subspace,
W # {0}, W # V. By assumption there exists an invariant complement W’ C V so that
V =W @& W' Note that dim W,dim W’ < dim V', and by Proposition 2.4 both (my, W)
and (my+, W’) are completely reducible again. We continue this process until the resulting
subrepresentations are irreducible. Note that this requires only finitely many iterations since

dimV < oo and dim W, dim W’ < dim V. ]

Theorem 2.6. Suppose (w,V') is a finite dimensional representation of G. Suppose Wy, ..., W, C
V' are minimal invariant subspaces (all non-zero) such that

V=Wi+.. . +W, (1)

(we don’t assume that this sum is direct). Then m is completely reducible. Moreover, for
every invariant subspace W C V' there exists 0 < 1 <r and iy,...,i; € {1,...,r} (if 1 =0,
the set of i;’s is understood to be empty) such that

V=WeW,&...eW,. (2)

Proof. 1t will suffice to prove (2). Let W C V be an invariant subspace. Let I = {i1,...,4} C
{1,...,7r} be a maximal (potentially empty) subset such that the collection of subspaces
W, W;,,..., W, is linearly independent, that is

WAWi 4. +W,=WaW, o&...oW,.

We call this sum U. If U =V, we are done. Hence we assume that U C V. Then because
of (1) there exists j € {1,...,r} such that W; € U, so in particular, W; # W, , k=1,...,L
Since the W; is minimal invariant, the intersection W; N W, is therefore empty for each

k = 1,...,1, and for the same reason, W; N W = (. Hence the collection of subspaces
W, Wi, ...,W;,W; is linearly independent in contradiction to the maximality assumption
of I. Thus U =V. O

Example 2.7. Complete reducibility of 74 equivalent to A being diagonalizable.

2.2 Orthogonal and Unitary Representations

From now on V' will denote a finite dimensional real or complex vector space, and K accord-
ingly denotes R or C.
Recall: An inner product on V is a map

:VxV —K
such that

e Yo,w € V: B(v,w) = B(w,v) (where the bar denotes complex conjugation; if K = R
this acts trivially and (3 is symmetric),
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o Yui,v9,w €V, an,a0 € K: Bagvy + agug, w) = ag B(vy, w) + agB(ve, w),
o Vv eV~ {0}: B(v,v) >0.

Definition 2.8. A representation (m,V) of a group G is called orthogonal (if K = R) or
unitary (if K = C) if there exists an inner product § on V' which is invariant under 7, that
is

B(r(g)v, m(g)w) = B(v, w)
for all v,w € V and all g € G.

Proposition 2.9. Suppose (w,V') is an orthogonal or unitary representation of G. Then m
1s completely reducible.

Proof. Suppose (7, V') is orthogonal or unitary, and let 5 be a w-invariant inner product on
V. Let W C V be an invariant subspace. Define

W ={veV|VweW: B(v,w) =0}

From linear algebra we know that V' = W @ W’. Hence it will suffice to show that W’ is
invariant. Let g € G, w' € W’ and w € W. Then

B(r(g)w',w) = B(x(g)w', 7(g9)w (g w) = Bw', 7(g~ " w)

where we used the 7-invariance of 3 for the last equality. Since W is invariant, (g~ )w € W,
hence S(w', m(g7')w) = 0 by definition of W’. Tt follows that 7(g)w’ € W’ so that W' is
indeed invariant. O

2.3 Complete reducibility for finite and compact groups

Theorem 2.10 (Maschke’s Theorem). Every finite dimensional real or complex representa-
tion of a finite group G is completely reducible.

Proof. Let (mw,V) be a finite dimensional real or complex representation of G. Let 5y be
an (arbitrary) inner product on V' (such an inner product can, for example, be found by
fixing an isomorphism V' ~ K" and taking the standard inner product on K™). Define for
v,weW .

Blv,w) = @l > Bo(m(g)v, w(g)w).

geG

It is easily seen that [ satisfies the first two properties of an inner product. For the positive
definiteness note that if v € V, v # 0, then By(7(g)v, 7(g)v) > 0 for each g € G so that 3 is
positive definite as well. [ is in fact also w-invariant: We have

B(r(h)v, w(hw) = |—Cﬂ| S bo(m(g)n(h)o, 7(g)w (h)w) = ﬁ S o (gh)o, m(gh)w)

geG geq

_ ’_é;' S Bolm (@), w(a)w) = Blv, w)

zeG
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for all h € G and all v,w € V. Hence (7, V) is orthogonal (if K = R) or unitary (if K = C)
so that by Proposition 2.9 7 is completely reducible. ]

Suppose now that G is a compact topological group (see Appendix 12.1 for the definitions
and examples). All representations considered here are finite dimensional real or complex
continuous representations.

Theorem 2.11. Every finite dimensional continuous real or complex representation (m,V)
of a compact topological group G is completely reducible.

By Proposition 2.9 it will suffice to show the following:

Lemma 2.12. Let (w,V) and G be as in Theorem 2.11. Then 7 is orthogonal or unitary
(depending on whether it is real or complez).

Proof. Recall that we fix a right invariant Haar measure on G. We will assume that we
normalized it so that G has measure 1. Let [y be an (arbitrary) inner product on V. Define
B for v,w € V by

5WW=L%WWW@W@

(note that G 3 g — So(m(g)v, m(g)w) € K defines a continuous function G — K). Then
B clearly satisfies the first two properties of an inner product. For the positive definiteness
use that fy is positive definite together with property (13) of the Haar measure. We finally
check that  is m-invariant: For h € G, v,w € V we have

BWWMWM=L%MMMW@W@=L%WWM@M@=MW@

where we used that the Haar measure is right-invariant. O]

3 Constructing new representations from old ones

We continue to assume that all representations are finite dimensional and that K = R or
K =C.

3.1 The contragredient/dual representation

Suppose (7, V) is a representation of GG. Recall that the dual V' of V' is the K-vector space
of all linear maps f: V — K.

Definition 3.1. The dual (or contragredient) of (m,V) is the representation (7/,V’) of G
defined by

©(9)f(v) = f(m(g~")v)
forgeG, feV i veV.
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Note that this indeed defines a representation of G: If g, h € GG, then

©(gh)f(v) = f(7((gh)"")v) = f(x(h™ )m(g~")v) = (7' (R) ) (m (g~ v) = 7'(g) o 7' (R) f (v).

Example 3.2. We want to work out what the dual representation looks like in terms of
matrices. Suppose V = K™ so that we canonically identify 7 with the matrix representation
m: G — GL,(K). Let ey, ..., e, denote the standard basis of K™, and let (-,-) denote the
standard inner product on K™. Then a basis for the dual of K™ is given by the linear forms
(-,e;), 7 =1,...,n, and we identify (K™)" with K™ with respect to this basis. We can then
compute

7 (g)( e5)e) = (n(g ™ erse5) = (m(g™)er)'e; = elmlg™V'e;

hence as a matrix representation we obtain

Proposition 3.3. Let (7w, V) be as above. Then
1. (7", V")~ (m,V)
2. m is irreducible if and only if @ is irreducible.

Proof. (i) is clear. For (i) suppose 7 is irreducible and let U C V' be invariant. Define
W:={veV|VfeU: f(v)=0}

Then for v € W and g € G we get that f(m(g)v) = 7'(¢7') f(v) = 0 for every f € U since
U is invariant. Hence W is an invariant subspace of V', and thus W = {0} or W =V since
7 is irreducible. But then U = V' or U = {0} and therefore 7’ is irreducible as well. The
other direction follows from this together with (7). O

3.2 Direct Sums

Definition 3.4. Suppose (m;,V;), i = 1,2 are two representations of a group G over the
same field K. We define the direct sum (m @ mo, V) @ V3) as the representation of G given
by

T @ T2(g)(v1, v2) = (m1(g)v1, T2(g)v2).

If (m, V1), ..., (m., V,) are representations of G, we inductively also define (m; & ... &7, Vi &
LBV,

Remark 3.5. We clearly have (m) @ o, Vi & Va) =~ (1o @ w1, Vo ® V1), and more generally if
o is a permutation of {1,...,r}, (Mm@ ... 71, Vi®...0V,) > (T,q) D ... D Ty, Vo) ®
.. ® Vo). We therefore don’t always need to fix a specific order when taking direct sums
of representations, that is, if we are given representations (mw;, V;) for i in some finite index
set I, we might write @,.;(m;, Vi) and this is well-defined up to equivalence.
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Example 3.6. We want to work out how direct sums look in terms of matrix representations.
Suppose (7w, Vi),..., (7., V,) are representations, and By, ..., B, are bases for Vi,... V,,
respectively. Let m; 5, : G — GL,,(K) denote the corresponding matrix representation,
where n; = dimm;. Then B = By U...UB,.isabasisof V=V, @& ... ®V, (we use the
ordering of B obtained by concatenating the B;’s), and writing 7 := m @© ... ® 7, and
n=mny + ...+ n, we obtain

T1,8: (g)

151 G — GL.(K), ms(g) = 72.52(9)

T‘-T»BT (g)
which is a block diagonal matrices with blocks of size n; x n; on the diagonal.
We collect some basic results on direct products:

Theorem 3.7. A representation (7w, V') of G is completely reducible if and only if there exists
irreducible representations (w1, V1),..., (7., V;) of G such that m ~m & ... D 7,.

Proof. This is just Corollary 2.5 and Theorem 2.6 in terms of direct sums of representations.
O

Theorem 3.8. Suppose (7,V) =~ (m,V1) ® ... B (7, V,) with w1, ..., 7, irreducible. Then
if W CV is invariant, there exists I,J C {1,...,r} such that

(Ww, W) = @(ﬂ-iv ‘/;)7 and (WV/W7 V/W) = @(ﬂ-j? ‘/J>
i€l jed
Proof. Suppose W C V' is invariant. By Theorem 2.6 there exists J C {1,...,r} such that
(7T7 V) = (7TVV7 W) S @(ﬂ-j’ ‘/J)
jeJ
so that

(mvyw, V/W) =~ @(7@-, V).

jeJ
For my note that (mw, W) = (mv; e, v;, V/ ;e V;) so that this case also follows from the
case of the quotient representation. O
Corollary 3.9. Suppose (m;,V;), i = 1,...,r, are pairwise non-equivalent irreducible sub-
representations of (w, V). Then Vi, ..., V, are linearly independent subspaces of V.

Proof. Suppose Vi, ..., V, are not linearly independent. Let 1 < m < r such that V;,...,V,,
are linearly independent, but Vi, ..., V,,, V41 are not. Then V,,,1N(V1®...®V,,) is a non-
zero invariant subspace of V', and hence also of V,,,,1. Since 7,,,; is irreducible, this implies
that V,,, 1N(Vi®...®V,,) = Vg, that is, Vi, € (Vi®...®V,,). By Theorem 3.8 41 is

therefore equivalent to €, ; 7; for some suitable I C {1,...,m}. Because of irreducibility,
|I| =1, say I = {ip}, but then 7, ~ m;, in contradiction to the pairwise” non-equivalence
of the m;’s. O
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Corollary 3.10. Suppose
(m, V)~ (m,V1) & ... (1, V) = (01, W1) D ... D (05, Wy)

for some irreducible representations (w1, V1), ..., (7, V2.), (o1, W1) ..., (05, W) (all non-zero).
Then r = s and there exists a bijection ¢ : {1,...,r} — {1,...,r} such that (m;,V;) ~
(), W) fori=1,...,r.

Proof. We argue by induction on r. When r = 1, m ~ m; is irreducible, hence s = 1 and
™ =~ 01.
Now suppose that r > 1. By Theorem 3.8 there exists I C {1,...,r} such that

(o1, Wh) ~ P, Vi).

el

Since o7 is irreducible, |I| = 1, and after reordering the 7;’s we can without loss or generality
assume that [ = {1}, that is, (o1, W) ~ (7, V7). But then

S s

B, W) ~ (mvyw,, V/WL) ~ (v, VIVi) = P (i, Vi)

j=1 =2

so that we can now apply the induction hypothesis and obtain the assertion of the corollary.
O

3.3 Tensor products

Definition 3.11. Let (7, V), (o0, W) be two representations of G over K. We define the
tensor product of m and o as the representation 7 ® o of GG on the tensor product V @ W of
V and W given by

TRo(gv@w="7(9)v®a(g)w

Recall that dimV @ W = dimV - dim W, so if m has dimension n and ¢ has dimension
m, ™ ® o will have dimension nm.

Remark 3.12. o Clearly, (r@0, VW)~ (c@m,WeV).

o [f m has dimension 1, then we can identify ® with a homomorphism G — K>, and
T®o: G — GL(V ® W) is equivalent to the representation G —» GL(W), g

m(g)o(g)-
Example 3.13. We can write the tensor product in terms of matrices as follows: Suppose
B ={vy,...,v,}is a basis of V, and C = {wy,...,w,,} is a basis of W. Let 5 : V — K",
and pc : W — K™ denote the corresponding isomorphisms which satisfy ¢g(v;) = ¢; and
we(w;) = f; (where the e; and f; denote the standard basis of K™, K™, respectively). Note
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that we have a canonical isomorphism K" @ K™ — M, (K) given by e; ® f; + e;f] so
that we get an isomorphism

ppc: VOW — Muxn(K), (v ®w) = ps(v)pe(w)".
Recall the matrix representations 75 : G — GL,(K), o¢ : G — GL,,(K) which are
characterized by
ei(m(g)vi) = m5(g)ei, and ge(o(g)w;) = oc(g)f;-
Hence using the isomorphism g ¢ we see that m ® o is equivalent to the representation

M: G — GL(Mym(K))

given by
II(g)A = m5(g)Aoc(g)".

Example 3.14. Suppose (7, V') is a representation of G of dimension n. Consider
TG — GL(VaV').

Fix some basis for V' and the corresponding dual basis for V/. Then we know from Example
3.2 that in terms of matrices 7'(g) = (m(g)™")" (we suppress the dependency on the fixed
basis here). Hence combined with the preivous example, 7 ® 7’ is equivalent in terms of
matrices to

G — GL(M,(K)), g+ (A m(g9)An(g)™),

that is, 7 ® 7" ~ Ad o 7w, where Ad : GL,(K) — GL(M,(K)) is the adjoint representation
Ad(z)A = xAz~! from Exercise 9. We know from Exercise 9 that Ad is not irreducible,
hence 7 ® 7’ ~ Ad o w will not be irreducible either.

Definition 3.15. Suppose H is another group, (m, V') is a representation of G and (o, W) is
a representation of H. We define the external tensor product of m and o as the representation
mxoof Gx HonV ®W given by

(mx0) (g, h)v @ w=m(g)v @ a(h)w
for (9,h) e G x Handv@w eV @ W.

We will later show that if 7 and ¢ are both irreducible, then so is w X ¢. This is not true
for m ® o as can be seen from Example 3.14.

Remark 3.16. If H = G, and A : G — G x G, A(g) = (g9,9), denotes the diagonal
embedding, then
(mxo)oA=1®o.

Example 3.17. Consider the embedding ¢; : G — G x H, 11(g9) = (g,1). Then (7 x0)oty ~
7dime a5 G-representations (that is, 7™ is the direct sum of dim o-many copies of 7). This
can be seen as follows: Fix a basis wy,...,w, of W. Then Vo W = @,_, ..V @ w;,
and each V ® w; is invariant under 7 X o o ¢y, and the corresponding subrepréséntation is
isomorphic to (m, V).

Similarly, if we consider the embedding to : H — G X H, 13(h) = (1, h), then (7 x0)ouy ~
o¥m™ as H-representations.
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4

4.1

Intertwining Operators and Schur’s Lemma

Intertwining Operators

Definition 4.1. Suppose (7;, V), ¢ = 1,2, are representations of G over the same field K.
An intertwining operator from 7 to ms is a linear map ® : V; — V5 such that

domi(g) =m(g)o®

for all g € G. In this situation we say that ® intertwines m; with ms.

Remark 4.2. e T =~ Ty is equivalent with the existence of a bijective intertwining oper-

ator from my to m,.

e In general, an intertwining operator does not need to be a bijection. For example, the

zero map P : Vi — V5, v — 0, intertwines m; with .

Example 4.3. Suppose (71, V1), (72, V) are representations of G, and put (7,V) = (m &
w9, V1 & Vs). Let @ : V; — V| v; — (v1,0). Then & intertwines m; with 7.

Theorem 4.4. (i) Suppose (w1, V1), (w2, Va) are irreducible representations of G and ® is

an intertwining operator from m to my. Then either ® =0 or ® is an isomorphism.

(i1) Suppose (w, V') is a representation of G, and V =Vi ... &V, with V1,...,V, minimal

invariant subspaces of V' such that wy, % wy, for all i # j. Then for every invariant
subspace U CV, U # 0, there exists {iy,... i} C{1,...,r} such that

U=V, ®...0V,

The indices i1, . ..,1; are uniquely determined by U up to ordering.

(Note that we already know this to be true up to isomorphism, see Theorem 3.8.)

Proof. (i) Suppose ® intertwines m; with 7, and m; and 7y are both irreducible. Let

v € ker ®. Then for all g € G,

®(mi(g)v) = ma(g)®(v) =0

so that ker @ is an invariant subspace of V. Because of the irreducibility of m, ® is
therefore either injective or = 0. Now let w € Im @, say w = ®(v) for a suitable v € V.
Then for all g € G, m(g)w = m(g)P(v) = ®(m(g)v) so that the image of ® is also
an invariant subspace of V5. Using the irreducibility of 7o we therefore get that & is
either = 0 or surjective. Putting this together with the first half of the argument we
obtain that either ® = 0 or ® is an isomorphism.
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(ii) Since (m, V') is completely reducible, (7, U) will be so as well, hence there exist minimal
invariant subspaces Uy, ..., U; C U suchthat U =U; ® ... ® U;. Foriv=1,...,l and
j=1,...,r consider the linear maps

@Z]UZ%U%VHV},

where the first two maps are the natural inclusions and the last map is the projection
from V' onto V; along the complement €, 4j Vi 1t is easily checked that ®;; inter-
twines 7y, with my,, hence since U; and V; are both minimal invariant, ®;; is either an
isomorphism or = 0 by the first part of the theorem. If ®;; is an isomorphism, it must
in fact be the identity map by definition. Moreover, since V =V, + ...+ V,, for each
¢ there must exist j; such that ®;;, is the identity. Hence U = Vi;, @ ... @ V};,.

O

Remark 4.5. If ® is an intertwining operator, then ker ® and Im ® are always invariant
subspaces independently of whether w1 and 7y are irreducible or not.

4.2 Schur’s Lemma

Theorem 4.6 (Schur’s Lemma). Suppose (m, V') is an irreducible finite dimensional complex
representation of G. Let ® be an intertwining operator from m to itself. Then there exists
a € C such that & = aidy, .

Proof. Since V is finite dimensional and complex, ® must have an eigenvalue, say a € C,
with eigenvector v € V', v # 0, that is,

(P — aidy)v = 0.

Therefore the endomorphism ® — aidy : V' — V is not an isomorphism. But & — aidy still
intertwines 7 with itself, hence by Theorem 4.4 it must vanish identically. O

Remark 4.7. e Schur’s Lemma is not true for real representation as R is not closed.
One can, however, replace C by another algebraically closed field.

e The finite dimensionality of the representations (which we always assume) is also es-
sential for Schur’s Lemma, though under certain circumstances a version of Schur’s
Lemma can also be proven for certain infinite dimensional representations using the
spectral theorem for self-adjoint operators.

4.3 Consequences of Schur’s Lemma

Corollary 4.8. Suppose (w, V1), (w9, Vo) are irreducible finite dimensional complex repre-

sentations of G. Then
1 if m >~ 79,

dim¢ Hom(7y, o) = {O s

where Hom(my, ) denotes the C-vector space of all intertwining operators ® : Vi — Vs
from my to ms.
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Proof. If m % ma, then by Theorem 4.4 we have Hom(m,m) = {0}. Now suppose that
71 =~ T and fix an isomorphism ®q : V; — V5 intertwining 7; with 7me. Let ® € Hom(7y, ).
Then ®;'o® : V; — V] is an intertwining operator of ; with itself, hence by Schur’s Lemma
there exists a € C with ® = a®q so that dim¢ Hom(m, me) = 1. O

Corollary 4.9. Suppose (mw, V') is an irreducible finite dimensional complex representation
of G. Let U be a finite dimensional complex vector space, and let o denote the trivial
representation of G on U (that is, o(g) = idy for all g € G).

Suppose W C V@ U, W # 0, is a minimal invariant subspace with respect to the
representation m ® o of G. Then there exists u € U such that W =V ® u.

Proof. Let m = dimU and let {uy,...,u,} denote a basis of U. Recall that 7 ® o is
equivalent to a direct sum of m-copies of . Hence if W C V ® U is minimal invariant,
we have (7 ® o)y, W) ~ (m, V). Fix an isomorphism ®, : W — V. We define m
homomorphisms ¢; : V@ U — V by the property that for all x € V ® U we have

T =¢1(7) @up + ...+ O(T) @ Uy
Then for every z € V ® U, g € G, we get on the one hand that

TRao(g)r = (m(g9)p1(x)) @us + ...+ (7(g)Ppm(z)) @ up,

and on the other,
T®o(g)r=d1(m®0o(9)r) @ ui + ...+ (T @ 0(9)T) @ Uy

Hence ¢;(m ®0(g)r) = m(g)¢i(x) for all i, g € G, x € V ®@U so that the restrictions (¢;)w €
Hom((m ® o)w,n). Hence by Corollary 4.8 there exist o; € C such that (¢;)w = a;P.
Hence for all x € W we get

T=¢1(x) @ur+ ...+ () @ Uy, = Po(2) @ (Q1ug + ... + Wpiy) =: Po(z) ® u.
]

Corollary 4.10. Suppose (mw, V') is an irreducible finite dimensional complex representation
of G, and (o, W) is an irreducible finite dimensional complex representation of another group
H. Then (m x o,V @ W) is an irreducible representation of G x H.

Proof. Let U C V@ W, U # 0, be an invariant subspace with respect to @ x . Let
7o : G — GL(W) denote the trivial representation of G on W. Then U is also an invariant
subspace of the representation (7 ® m, V ® W) of G. By Corollary 4.9 there exists w € W,
w # 0, such that V ® {w} CU.

For v € V' we now define

W, ={w eW |vew eU}.

W, is clearly o-invariant, hence W, = {0} or W, = W because of the irreducibility of o.
Since w € W, for all v, it follows that W, = W for all v € V. Hence U = V ® W so that
7 X o is irreducible. O
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Corollary 4.11. Suppose G is abelian, and (w,V') is an irreducible finite dimensional com-
plex representation of G. Then m has dimension 1.

Proof. Since (G is abelian, we get for all g, h € G,
m(g) o w(h) = w(gh) = w(hg) = mw(h) o w(g)

so that w(h) : V' — V is an intertwining operator of m with itself for every h € G. Hence by
Schur’s Lemma, there exists «j € C such that 7(h) = agidy. Clearly, the map G — C* =
GL1(C), h — «y is a group homomorphism, hence 7 is equivalent to this 1-dimensional
representation, and therefore must be 1-dimensional itself because of irreducibility. O]

4.4 Commutator subgroups

The main result Corollary 4.17 of this section are a consequence of Corollary 4.11.
Recall:

Definition 4.12. Let G be a group. The commutator subgroup |G, G] of G is the subgroup
of G generated by all the commutators

l9,h] := ghg 'h" € G, g,h €.
Remark 4.13. G is abelian if and only if |G,G] = {1}.

Lemma 4.14. The commutator subgroup [G, G| is a normal subgroup of G, and the abelian-
ization A(G) = G/|G,G] of G is an abelian group.

Remark 4.15. The abelianization of G is the largest abelian quotient of G.
Proof of Lemma 4.1/. First let g, h,x € G. Then

z[g, hla™" = [zgz™ zha™'] € |G, G]
so that [G, G] is a normal subgroup of G. Now if 7 := z[G, G], 7 := y[G, G| € A(G), then
Tty =y Yy G, G) = 1[G, G
so that A(G) is abelian. O

Lemma 4.16. Suppose N is a normal subgroup of G, and let p : G — G /N denote the
projection. Then

{representations of G/N} — {representations of G with kernel containing N}, m+— 1 & p

1s a bigection. This bijection is also true, when we add properties such as ’finite-dimensional’,
‘complex’, or "irreducible’, etc on both sides

Proof. This is clear from the definition of p. m
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Corollary 4.17. Let p: G — G/|G,G] = A(G) denote the projection. Then the map

{1 — dimensional complex representations of G}

— {irreducible finite dimensional complex representations of A(G)}

given by m+— 7o p is well-defined and a bijection.

Proof. By Lemma 4.16 and Corollary 4.11 it will suffice to show that the irreducible finite
dimensional complex representations of G whose kernel contain [G, G| are exactly the 1-
dimensional ones. Every such representations whose kernel contains [G, G] is 1-dimensional
by Corollary 4.11. On the other hand, if 7 is a 1-dimensional representation of G, then the
image of 7 is a commutative group, hence 7([g,h]) = 1 for all g,h € G so that [G,G]| <
ker 7. O

Example 4.18. Let G = S,,. Let sgn : G — {%} denote the signum character, that is
sgn(o) = 1 if o is even, and sgn(c) = —1 if ¢ is odd. One can show that [S,,S,] = A, =
ker sgn, the alternating group on n-elements. Since S, /A, ~ {£1} it follows from Corollary
4.17 that S, has exactly two 1-dimensional complex representations, namely the trivial one,
and sgn.

5 Matrix Coeflicients

Recall that
C[G] =C —v.s. of all maps f: G — C.

Definition 5.1. Suppose (7, V) is a finite dimensional complex representation. Let B =
{v1,...,v,} be a basis for V and write

m5(9) = (aij(9))i; € GLn(C) (3)
with respect to this basis. The space
M(7) :=spanc{a;; | i, =1,...,n} C C[G]

is called the space of matriz coefficients of m and the functions a;; : G — C are called
matrix elements of .

Definition 5.2. We fix some notation:

e For a linear map ¢ : V — V we write
try: G — C, g — tr(n(g) 0 ¢).
e Forve Vand f eV’ (V' the dual space of V') we write
pro: G—C, g f(m(g)v).
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Proposition 5.3. We have
M () = {try | ¢ € Hom(V,V)} = spanc{pus, |v eV, f e V'}
In particular, M () is independent of the choice of basis of V' used to initially define M (7).

Proof. Let {vy,...,v,} be as above, and let {fi,..., f,} be a dual basis of V.
Let f=ayf1+...+a,fn €V and v = piv1 + ...+ B,v, € V. Then for g € G

pio(g) = f(r(g)) = Z ;B fi(m(g)v;) = Zazﬂjaij(g)

(with a;;(g) as in (3)). Hence M (7) equals the span of the fiy,.
Now if A € Hom(V, V') write A as a matrix with respect to B, that is (c;):; € M, (K).
Then for g € G,

tra(g) = tr ((ai;(9))ij(ar)r) = | > ailg)y

so that M () also equals the collection of the tr4. O

Remark 5.4. The map V' xV — M(7), (f,v) > . is bilinear, hence we obtain a unique
linear map V' @ V.— M (7).

Example 5.5. e If 7 is one-dimensional, 7 is just a homomorphism G — C* and
M(m) = Cn.

o If 7~ o, then M(m) = M(o).

o If r~m &...8&m (the m; don’t need to be irreducible), then M (7)) = M(m)+ ...+
M (m,).

Lemma 5.6. The vector space M (m) is invariant under left and right translation by elements
of g, that is, for all F € M(m) and all g € G, we have F(g-), F(-g) € M(~).

Definition 5.7. The representation Reg : G x G — GL(C[G]) defined by
Reg(g, h)F'(z) = F(h™"zg)

is called the two-sided regular representation of GG. For each finite dimensional complex
representation 7w of G we write

Reg, : G x G — GL(M (7))
for the corresponding subrepresentation of Reg on M (7).

Proof of Lemma 5.6. Let f € M(m). We can assume that F' = tr, for some ¢ € Hom(V, V).
Then for all g, x € G:

F(gz) = tr(r(gz)p) = tr(x(g)m(x)em(g)m(g) ") = tr(m(x)em(g)) = tryn(g (z)

where we used that the trace is invariant under conjugation. Hence F'(g-) = tr,n(q) € M (7).
Also, F(zg) = tr(m(x)m(g)¢) = trr(g),(x), hence F(-g) = trr(q, € M (7). O
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Theorem 5.8. Suppose (m,V) is an irreducible finite dimensional complex representation.
Then m x ©' ~ Reg, via the isomorphism

VRV — M(m), v® [+ sy

Proof. We show first that ® is an intertwining operator. Let g, h,x € G. Then

d(r @7 (g, h)v® f)(z) = ©((m(g9)v) @ (7' (h) [)) @) = fhar () g (g)0 ()
= f(r(h™Ym(z)w(g)v) = pro(h™ 2g) = (Reg, (g, h)pgo) (x)

so that indeed ® intertwines 7 x 7’ with Reg_. Since ® is surjective by definition, it remains
to show that & is injective. By Corollary 4.10 (7 x 7/, V ® V") is irreducible. Since the kernel
of an intertwining operator is invariant, it must therefore be either {0} or the whole space.
Because we already know that the map is surjective, the kernel must thus be {0}. O

Corollary 5.9. Suppose (w, V') is an irreducible finite dimensional complex representation.
Then dim M (7r) = (dim 7)2.

Proof. This is clear from Theorem 5.8. O]

Corollary 5.10. Suppose my, 7o are irreducible finite dimensional complex representations
of G. If my 2 7y, then Reg, % Reg,,.

More generally, if my, ..., 7, are irreducible finite dimensional complex representations
of G which are pairwise non-equivalent, then M(m),..., M(my,) are linearly independent
subspaces of C[G].

Proof. The second assertion follows immediately from the first one together with Theo-
rem 2.6. It will therefore suffice to show that if Reg, =~ Reg,,, then m; ~ . Suppose that
Reg,, ~ Reg,,. Let 0; denote the restriction of Reg, to the subgroup G x {1} of G. Then
clearly, o; >~ Rpf(x,), Where Ry, denotes the right regular representation of G' on M (m;).

We claim that Ry ~ wfim ™ (i.e., the direct sum of dim 7;-many copies of ;). Assuming
this claim, we can conclude that if Reg,, ~ Reg,,, then o1 ~ 0y which then implies that
m =~ my because of the claim and irreducibility of m; and 7.

To prove the claim recall that M(m;) ~ V; ® V/. For g,z € G, py, € M(m;) we get

(Ratmy(9iis) (@) = ppo(xg) = f(mi(2g)v) = fifm,(9)0(x)

so that (Rag(m), M(m)) ~ (1@, V@ V) ~ W?im Y Where (1,V;) denotes the trivial repre-

sentation of G on V;. Hence the claim follows from dim V' = dim V;. O

6 Matrix coefficients for finite groups

In this section we assume throughout that G is a finite group and all representations are
complex even if not explicitly mentioned.
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Theorem 6.1. (i) Every complex irreducible representation of G is finite dimensional.

(ii) Up to equivalence G has only finitely many (in fact at most |G|-many) irreducible
complex representations.

(iii) Every irreducible complex representation of G is equivalent to a subrepresentation of
the right regular representation R : G — GL(CI|G]).

Proof. Let (m, V) be an irreducible complex representation of G.

(i) Let v € V, v # 0, and let U = spanc{m(g)v | ¢ € G}. Then U # 0 is an invariant
subspace of V', hence U = V because of the irreducibility of 7. Since G is finite,
dimV =dimU < |G| < 0.

(iii) By (i) and the proof of Corollary 5.10 we know that R ~ 7%™7, hence 7 is
equivalent to a subrepresentation of (Ra(x), M (7)) which is in turn a subrepresentation
of (R, C[G)).

(ii) Suppose 7, ..., m, are pairwise inequivalent irreducible complex representations. The
collection M (my), ..., M(m,) are by Corollary 5.9 therefore linearly independent so that

r<dimM(m)+...+dimM(m,) =dimM(m) & ... M(r,.) <dim C|[G] = |G|.

m

Theorem 6.2. Suppose m,..., 7, is a complete list of representatives for the equivalence
classes of wrreducible complex representations of G. Then

C[Gl=M(m)®...® M(r,). (4)

Proof. We already know that the right hand side of (4) is contained in C[G]. Note that if
we define for x € G the map

1 ifx=yg,

0 else,

@:GHC,@(g)—{

then {0, | € G} is a basis of C[G]. It will therefore suffice to show that ¢, € C[G] for each
zed.

By Maschke’s Theorem, (R, C[G]) is completely reducible, that is R ~ «{"* & ... & 7w
for suitable integers my,...,m, € Ny. Define € : C[G] — C by ¢(f) = f(1) where 1 € G
denotes the unit element of G. Hence € € C[G]" and we can consider

Hence
Op = fes, € M(R)=M(m" @ ...&m") = M(m)+ ...+ M(r,)

T

which finishes the proof. O
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Corollary 6.3. Let 7y, ..., m,. be as in Theorem 6.2. Then
|G| = (dimm)® + ... + (dim,)>.
Proof. This is immediate from Theorem 6.2 and dim C[G] = |G|. O

Corollary 6.4. Let the notation be as in Theorem 6.2. Then
R~ qimm g @ gdimmr
Proof. Recall that Ry ~ W?im ™ hence the corollary follows from Theorem 6.2. O

Example 6.5. Suppose G is finite and abelian. Then dim#; = 1 for all <. Hence up to
equivalence G has exactly |G|-many inequivalent irreducible representations, each of dimen-
sion 1.

Example 6.6. Let G = S;3. Then |G| = 6, and the only way to write this as a sum of squares
isas1+1+1+1+1+1o0r1+1+ 22 In the exercises it was shown that if all irreducible
representations of a group are 1-dimensional, then G is abelian, which is not the case here.
(Alternatively, we know from Example 4.18 that S3 has exactly two 1-dimensional represen-
tations.) Hence G must have two non-equivalent 1-dimensional representations (which we
already found), and one irreducible 2-dimensional representation. In fact, we already know
what this 2-dimensional representation is: It is the permutation representation of S3 on the
2-dimensional vector space

V= {(l’l,xg,xgg) < CS | I +ZL’2+JI3 = 0}

Example 6.7. Let G = S;. Then |G| = 24. We know that G has exactly two non-equivalent
1-dimensional representations, namely the trivial representation yo and the signum repre-
sentation y = sgn, and we also found an irreducible 3-dimensional representation, namely
the permutation representation m on the 3-dimensional space

V= {($1,x2,$3,$4) S (C4 ’ X1+ To+ Tz + x4 = 0}

We obtain another irreducible 3-dimensional on V' by multiplying with x, that is, (xm, V),
and one can show that this is not equivalent to m. Now 24 — 1 — 1 — 32 — 32 = 22 so that
we are missing one irreducible 2-dimensional representation. To find this two-dimensional
representation consider the Klein group

H = {1, (12)(34), (13)(24), (14)(23)}

which is a normal subgroup of Sy with the property that S;/H ~ S5 (we identify those two
groups). Let (o, W) denote the irreducible 2-dimensional representation of S3 and define G :
Sy — GL(W) by 6(g) = o(gH), which then gives the missing 2-dimensional representation
of S4.
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6.1 Invariants?

Suppose G is a finite group and H < G a subgroup. Then G acts on the coset space G/H
by left multiplication, that is by g - *H = grH. We get a corresponding representation

7y 1 G — GL(C[G/H)), 7u(g)f(zH) = f(g 'zH).
Lemma 6.8. The linear map
¢:C[G/H] — C[G]" :={f:G—C|VYgeG he H: f(gh)=f(9)}, f— fop,

where p : G — G/H 1is the projection, is a bijective intertwining operator of my with
Lejgym, where Lejgn denotes the subrepresentation of the left reqular representation of G on

the subspace C|G]" C C[G].
Proof. Clear from the definitions. O

Theorem 6.9. Suppose (7w1,V1),..., (7, V) is a complete list of representatives for the
equivalence classes of irreducible complex representations of G. Let v; : V; @ V! — M (m;)
be the isomorphism from Theorem 5.8. Then

T

ClG/H] ~ P u(Vi" @ V))

i=1
where VH denotes the subspace of H-invariants, that is,
Vi ={veV,|Vhe H: m(h)v =0}

Proof. Recall that C|G] = M(m) & ... & M(m,), and each M(7;) is invariant under right
translation. Hence
C[G/H| ~C[G)" = M(m) & ...® M(x,)"

where M (7;)" denotes the subspace if H-fixed vectors (under right translation) in M (m;).
We rewrite this space as follows:

M(m))! ={F € M(n;) |Yh€ H: F(-h) = F}
={yj(2) |z € V;® V], Vh € H : Reg, (h, v;(z) = v(z)}
={yj(x) |z € V;® V], Vh € H : vj(mj x mi(h, 1)x) = vj(2)} = v; (V] @ V)

which is exactly what we were looking for. O]

Corollary 6.10. Let the notation be as in Theorem 6.9. Then
mH H
Tg~m @ emT

where mfl = dim VJ-H.

2We’ve skipped this section in class for now, but we’ll come back to it later
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Proof. It follows as in the proof of Corollary 5.10 that for each j the homomorphism v; gives
an equivalence between the representations 1y @} and Ly;(,,yu where 1y denotes the trivial
representation of G on V]H . Hence

T ~ Lejgn = Lyigryr © oo @ Lyy(ryn (,Kll)dimle OB (W;)dimVTH
dim(V{)H
T

S...0 ngm(v;)H

where the last equality follows from the fact that each 7r; is irreducible, hence must be equal
to one of 7y, ..., m,, say 7j ~ 7, so that then dim V' = dim(V})".

It will therefore suffice to show that dim V" = dim(V})”. We will in fact show the
following: If (o, W) is a completely reducible representation of H, then dim W# = dim(W")#.
To see this let o1, ...,0;, denote a complete list of representatives for the equivalence classes
of irreducible representations of H with o; being the trivial representation. Write o ~
o' @ ... ® o) for suitable ny,...,n; € Ng. Then dimW# = n;. On the other hand, we

can also write o’ ~ 0?,1 b...P U?; for suitable nf,...,n! € Ny. As discussed before, the
numbers nf, ..., n; agree with ny,...,n; up to permutation and n; = n if 0; ~ o}. Since
the trivial representation is equivalent to its dual, it therefore follows that n; = n}, that is,
dim WH = dim(W")H. O

7 Character Theory

For now we don’t need to assume anything about our group G, but all our representations
are finite dimensional over R or C even if not explicitly mentioned.

Definition 7.1. Let (m,V) be a finite dimensional real or complex representation of G.
Then
Xr: G —> C, xx(9) = trm(g)

is called the character of «.

Note that x, € M(m).

Example 7.2. e If 7 has dimension 1, that is, 7 : G — K*, then y, = 7. Hence if
(G is abelian and finite, we sometimes call its irreducible complex representations its
characters.

e If 1y : G — GL(V) denotes the trivial representation on a finite dimensional vector
space V', then x1,(g) = dimV for all g € G.

e Recall the representation 7 : R — GLy(R), m(t) = <f2i§2) 22;%2) from Example 1.10.
Then x,(t) = 2cos(t).

e Recall the representation 7 : S,, — GL,,(C) which sends o € S,, to the corresponding
permutation matrix from Example 1.11. Then

Xr(0) =|{m € {1,...,n} | o(m) = m}| = # number of fixed points of o.
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7.1 Basic properties of characters

We collect some basic properties of characters for 7, o finite dimensional representations of
G (1 denotes the unit of G):

(i

(ii) T=0 = Xr = Xo

(1) =dim7

) X
)
(il) Xreo = Xr + Xo
(iv) Vg € G xw(9) = xx(97")
(V) Xx@o = XnXo

i)

(vi) Vg,h € G : x(97"hg) = xx(h)

Moreover, if H is another group, 7 a finite dimensional representation of G, and ¢ a finite
dimensional representation of H, then

(Vi) Xmxo(9,h) = xx(9)Xo(h)

forge G, he H.
All those properties are immediate from the definition.

Remark 7.3. If we apply (i) to the right reqular representation R of a finite group G, we
get

r

|G =dim R = xp(1) = Y dimmixe, (1) = Y _(dimm;)”

i=1
where 7y, ..., m. are representatives for the equivalence classes of irreducible complex repre-
sentations of G.

Definition 7.4. A function f € C[G] is called a class function or central function if it is
constant on conjugacy classes of G, that is, for all g, h € G, we have f(g~'hg) = f(h). We
also write

C[G]# = {class functions f € C[G]}.

Characters are therefore class functions, that is, x, € C[G]*

7.2 Characters of finite groups

Theorem 7.5. Suppose G is finite and 71, ..., 7. s a complete list of representatives for
the equivalence classes of irreducible complex representations of G. Then

(C[G]# = CXm S...D (CXm»
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Proof. Because of (4) it will suffice to show that C[G]# N M (7;) = Cx,.
Recall that M (m;) = {tra | A € Hom(V, V)} with tru(g) = tr(m;(g)A). Suppose that tr
is a class function. Then for all g,h € G,

tra(h) = tr(m;(h)A) = tr(m;(g)'m;(h)m;(9)A) = tr(m;(h)m;(9) Ami(9) ™) = trr,(g)an, ()1 (h).

Since 7; is irreducible, the map Hom(V}, V;) — M(m;), A — try defines an isomorphism,
hence it follows that A = 7;(g)Am;(g)~. Hence A is an intertwining operator of 7; so that
by Schur’s Lemma, there exists a € C such that A = aidy,. Hence

tra(h) = traiay, (h) = tr(am;(h)) = axr; € Cxa,.
[l

Corollary 7.6. Suppose G is finite. Then the number of equivalence classes of irreducible
complex representations of G equals the number of conjugacy classes in G.

Corollary 7.7. Suppose G is finite. Then any finite dimensional complex representation of
G is uniquely determined (up to equivalence) by its character.

Proof. Let m be a finite dimensional complex representation of GG, and let mq,...,m, € Ny
be such that 7 ~ 7" @ ... @ 7. Then xr = miXx, +...+mM;Xx,, and the m; are uniquely
determined since Xy,,. .., Xx, are a basis of C[G]*. O

8 Schur orthogonality

In this section G is a finite group. We denote by (m,V1),...,(m,V,) a complete list of
representatives for the equivalence classes of irreducible complex representations of G, and
by x1, ..., X the corresponding characters.

Recall the two-sided regular representation Reg : G x G — GL(C[G)).

Definition 8.1. We equip C[G] with the inner product

(1, f2) = Zfl

gEG

for f1, fo € C[G].
Lemma 8.2. (-,-,) is Reg-invariant, that is, for all g,h € G, and all fi, fo € C[G] we have

(Reg(g, h) f1,Reg(g, h) f2) = (f1, f2)-
Proof. We compute:

(Reg(g, h) f1, Reg(g, h) f |G|Zf1h 29) fo(h~12g) = |G|Zf1 W fa(y) = (fi. fo)

zelG yeG

where we used the bijection G — G, x + y := h™'xg in the second equality. O]
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8.1 Invariant inner products

Theorem 8.3. Suppose (w,V) is a fintie dimensional complex representation of G, and
By, By are w-invariant inner products on V. Then there exists a € Ry such that By = aBs

Proof. See Exercise 18. O

Theorem 8.4. Suppose (w,V') is a finite dimensional complex representation of G. Let
U W CV be minimal invariant subspaces such that 7y % my. Let B be a m-invariant inner
product on V. Then U and W are orthogonal with respect to B.

Proof. Let p: U — V — W denote the orthogonal projection with respect to B. Then
p is clearly an intertwining operator from 7y to my, thus = 0 since 7y and my are not
equivalent. Now for all w € U, w € W we also have

B(u,w) = B(u — p(u),w) + B(p(u),w) = B(p(u), w)
hence, B(u,w) = 0 since p = 0. O
An immediate consequence of this is the following:
Corollary 8.5. The subspaces M(m1), ..., M(n,) of C[G] are orthogonal with respect to (-, -).

We can be even more precise: Fix a m;-invariant inner product B; on V; for each ¢, and
let B; denote an orthonormal (with respect to B;) basis of V;. Write

7i5,(9) = (@)(9))np=1,..n, € GLi, (C)
where n; = dim ;.
Theorem 8.6. The set

{a® li=1,...,r, py=1,...,n;}

Rl

is an orthogonal basis for C[G] with respect to (-,-,). More precisely,

<CL(i) (j)>:{nii ifi:j? (K/Hu):(A’V)’

b ’ >\?
s v 0 else.

Proof. We already know that a,(f& and aE\JB are orthogonal if i # j. We therefore fix i« = j and
drop this index from the notation for the remainder of the proof, that is, we write n = n,,
V =V, etc. Define an inner product (-,-) on M,(C) ~ End(V) (where the isomorphism is
with respect to the fixed basis) by

(4, B) = tr(AB)).
Consider the representation p : G x G — GL(M,,(C)) given by
p(g,h)A = ms(h)~" Ams(g).
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Then (-,-) is invariant with respect to p since mg(h)™! = Wg(h)t since our chosen basis
is orthonormal with respect to the m-invariant inner product. Moreover, the isomorphism
M, (C) — M(m), A~ tra, gives the equivalence p ~ Reg, (.. Hence via this isomorphism
we obtain another Reg (., invariant inner product on M (rr), which therefore coincides with
(-,+) up to some positive real constant, that is, there exists v > 0 such that for all A, B €
M, (C) we have (A, B) = a(tra, trp).

Recall the definition of the matrix E;; € M, (C) which has entry 1 at position (4, j) and
Os else. Note that trg,;(g) = tr(7s(g) Ei;) = a;;(g). Hence we get

1 if (4, 5) = (1, v),

CI(aij,%u) = a<trEij7trEHV> (E”’E ) - {0 else

We are left to show that o = n. For that first note that the fact that = is unitary with
respect to the fixed inner product on V implies that

> aii(g)ari(g) = {1 o=

o 0 else.

This therefore implies that

Z Z aij(9)a;(9) = > _(aij, ai) = nja,

geG j=1 j=1
hence a = n. 0
Corollary 8.7. x1,..., X, is an orthonormal basis of C[G]*

Proof. For each i we have x;(g) = >, _ Lo akk( ). Hence by Theorem 8.6 we have (x;, x;) =
0if ¢ # j. If i = 7, we get also by Theorem 8.6

1 1 1 1 ]'
oxa) = Y <al(clz7al(l)> = > Wigﬂi;ﬁ) =ni—=1

kil=1,....n; k=1,..n; v

Corollary 8.8. If (m,V) is a finite dimensional complex representation of G, then
T~ @ ,/.I_Z'(Xw,Xi).
i=1,...,r

Proof. We already know that m ~ @i:l,...,r m;" for suitable uniquely determined m; € Ny.
The assertion then follows from y, = mix1 + ... m,x, together with Corollary 8.7. O

Corollary 8.9. Let (m,V) be a finite dimensional complex representation of G. Then 7 is
irreducible if and only if (Xx, Xx) = 1.

Proof. Write m ~ @,_, , m" for suitable uniquely determined m; € Ny. Then (xr, X») =
m?2 + ...+ m? so that 7 is irreducible if and only if (x,, xr) = 1. O
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8.2 Orthogonality Relations

We still assume in this section that G is finite, 71, ..., m, is a complete list of representatives
for the equivalence classes of irreducible complex representations for G, and x,..., X, are
their characters.

Recall the inner product on C[G] we introduced in the last section: For Fi, Fy € C[G],

(F, Fy) = Z Fi(9)F(9)

gEG

Recall that yi, ..., X, is an orthonormal basis of C[G]# with respect to (-, ).

The character table of G collects information on the characters and irreducible represen-
tations of G in a table. Let g1 = 1, ¢o, ..., g, € G be representatives for the conjugacy classes
Cy ={1},Cs,...,C, of G (recall from Corollary 7.6 that the number of conjugacy classes in
G coincides with r), and let m; = |C}|, j = 1,...,r. Then the character table of G looks as
follows:

1 Mo ms m,
1 92 g3 - G
1=m 1 1 1 . 1
T2 | x2(1)  Xa2(92) Xa2(g3) --- Xa(gr)
T | xr(1) Xr(92) Xe(g3) oo Xo(gr)
Note that we in fact know the entries in the first column: x;(1) = dimm;, i = 1,...,r.

We might also view this as an r x r-matrix (x;(g;))ij=1...» € M,(C). Because of the or-
thonormality of the basis x1, ..., x, of C[G] we get

|G|ZmJXH 9i)xv(95) = {1 = (5)

0 else,

that is the rows of the matrix

VIGI

constitute an orthonormal basis of C” so that CC' = 1, (where 1, is the r x r identity
matrix). Hence C is a unitary matrix so that we immediately also obtain orthonormality of
the columns:

C:= ( VI X#(gu))

Corollary 8.10. For every g,h € G we have

4 — [ yrg,n ugat heC,
: g, h are conjugate, say g,h € C;,
E . . h — my 6
XJ( X {0 else. (6)

32



The two equalities (5) and (6) together are usually called the Schur orthogonality relations

Example 8.11. Suppose G is the cyclic group of order m. We take G = Z/mZ for con-
creteness. Then G is abelian, thus has m-conjugacy classes and m (equivalence classes of)
irreducible complex representations, each of dimension 1. In fact, they are given by

Xj(k) = Ck(j_l)v j = 17 cee, M,

where ( is a primitive mth root of unity (for example ¢ = e?™/™). The character table of G
then looks as follows:

1 1 1 1
0 1 2 oo o m—1
l=x1]1 1 1 . 1
ell ¢ ¢ o
w|to¢¢t L e
X |1 ¢t QO ()

Example 8.12. Take G = S3. Then G has three conjugacy classes, represented by 1,
(12), and (123). The classes have cardinality 1, 3, and 2, respectively. We already know
the irreducible representations in this case: We have two one-dimensional ones, namely the
trivial representation 1 : S35 — C*, and sgn : S5 — C*, and we have one two-dimensional
irreducible representation m. The character table of S; therefore looks as follows:

1 3 2

1 (12) (123)
111 1 1
sgn |1 —1 1
T2 0 1

Example 8.13. Let G = S;. This group has five conjugacy classes, represented by 1, (12),
(123), (1234), (12)(34), with cardinality of 1, 6, 8, 6, and 3, respectively. We already found
representatives for the irreducible complex representations of S, in Example 6.7. From that
we can read of the character table of S, as follows:

1 6 8 6 3

1 (12) (123) (1234) (12)(34))
111 1 1 1 1
sgn |1 -1 1 -1 1
T3 1 0 —1 —1
T®sgn |3 —1 0 1 —1
c|2 0 —1 0 2
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9 Induced Representations

9.1 Induction on characters

Let G be a finite group and H < G a subgroup. Given f € C[G]#, we can obtain a class
function on H just by restricting f to H. We thus can define the restriction map

Res% : C[G]* — C[H)*, f+ fiu.
We would like to define a map in the other direction as well.

Definition/Lemma 9.1. For f € C[H] define f € C[G] by

f(g)::<{£(g) ifg € EL
else.
Then the map
Ind% : C[H]* — C[G]#, Ind% f(g) Il Zf r tgx)

zeG

1s called the induction from H to G. If f = x is a character of H, then Indgx 1s called an
induced character.

Note that a priori Indgx is not necessarily the character of a representation of GG even if
X was a character of a representation of H. (But we’ll see later that this is in fact the case.)

Proof. We need to check that Ind$ is well-defined, that is, that Ind% f is indeed a class
function on G. For that let g,h € G, f € C[H]#. Then

G 1 -1 G
Indiy f (™" gh) = 175 Z fle™ h ghx) = ] Z fy'gy) = nd f(g)
zeG yeG
where we made the substitution y = hx. Hence Indg f is indeed a class function on G. [
Remark 9.2. e Ind¥ is a linear map C[H|#* — C[G]#.

o [fxy,...,x; € G are representatives for the right cosets G/H, then

Indgf Z f xgr) Zf(x;lgxi).

zeG/H

Theorem 9.3 (Frobenius Reciprocity). Let f € C[H|# and F € C[G]*. Then by unfolding
the definitions we get
<Ind§faFvG::<fuRﬂsg}wfﬁ

where (-,-)¢ denotes the inner product on C[G] as introduced at the beginning of §8.2, and
(-,-Yu is the analogous inner product on C[H].
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Proof. Let f € C[H]* and F € C[G]*#. Then

(Indf f, F) Zlndi’}f = G’ ] ZZf " g)F(g)

gEG geG zeG

Now note that f(z 'gz) # 0 if and only if 27 'gz € H, that is, if and only if there exists
h € H such that ¢ = zha™!, and this h determines ¢ uniquely. Hence we can continue our
calculation as follows:

(Ind$ f, F)g |G|| |ZZf F(zha1) |ZZf h)F(h)

x€G heH xEG’ heH
T Z f(h = (f,Res$ F)y
heH
where we used that F' is a class function on G in the second equality. O]

9.2 Induced representations

G still denotes a finite group and H < G a subgroup. If (7, V) is a representation of G, we
obtain a representation of H on V by simply restricting m to H. We denote the resulting
representation by Res$r: H — GL(V).

Now suppose (o, W) is a complex finite dimensional representation of H. Define

C(GHW):={f:G—W |Vhe HgeG: f(hg)=0c(h)f(g9)}
Definition 9.4. The map
Ind$n : G — GL(C(G, H,W)), (Indgw(g)f) () := f(xg)
defines a representation of G on C(G, H, W), called the induced representation.

Example 9.5. Suppose H = {1} is the trivial subgroup of G, and let 1 : H — C* denote

the trivial representation of H. Then Indfll is isomorphic to the right regular representation
of G on C[G]. (See exercises)

Remark 9.6. If o is a representation of H of dimension m, then dimIndG o = m - |G/H|.
We now obtain a second version of Frobenius reciprocity:

Theorem 9.7 (Frobenius Reciprocity for representations). Let w be a finite dimensional
complex representation of G, and o a finite-dimensional complex representation of H. Then

<X7T7 XIndga>G = <XRest7r> XU’>H'

An immediate consequence of this is the following;:
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Corollary 9.8. Let m and o be as in Theorem 9.7 and both irreducible. Then m occurs in
Ind% o with the same multiplicity as o occurs in Res$r. O]

In view of Theorem 9.3 to prove Theorem 9.7, it will suffice to show the following lemma:

Lemma 9.9. Let m# and o be as in Theorem 9.7. Then
(7’) ReSHXﬂ' - XReng?

(i7) dFXe = Xinago-

Proof. The first assertion is clear. To prove the second, let z1,...,2; € G denote represen-
tatives for the cosets G/H, and recall that

l
Indfxs(9) = Y Xolz; ' g:).

i=1

Let W denote the representation space of o and write W¢ = C(G, H,W). Note that

xy', ..., x; " is then a set of representatives for H\G. Hence the map

l l
We— W =@wWY, e (flarh)..o, flah)
i=1 i=1

defines an isomorphism of vector spaces.

Let g € G. Then for every i € {1,...,l} we can find unique j; € {1,...,l} and h € H
such z; 'g = ha;'. This means that Ind5o(g) maps W into WU?). Note that i = j; if and
only if z; *gx; € H. In that case the restriction of Ind%o(g) to W defines an endomorphism
of W@ which in fact just acts as o(x; 'gz;) on W® ~ W. Hence we can compute:

Xinago(9) = trIndfo(g) = Y tr (Indfo(g)wen) = > tr (Indo(g);ww)
i=1,...,li=j; i=1,...Lx; gr €H
= ) tro(zlgm) = Xo (2 g;) = Ind§x0(g).
i=1,..la; tga, € H i=1,...,1
O

Remark 9.10. One can more generally show that
Hom (7, Ind% o) ~ Hom(Res%n, o)

via a canonical isomorphism (here the left and right hand side denote the vector spaces of
intertwining operators between the respective representations).
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9.3 Mackey Theory

Induced representations are in general not irreducible as can already be seen from Exam-
ple 9.5, but they can be irreducible in some cases:

Example 9.11. Let H = A3 < S3 = G. Then Ajz is a cyclic group of order 3 generated by
the cycle (123). Let p : A3 — C* be the representation given by p((123)) = €>™/3, and let
T = Indi?; p. The elements id and (12) are a set of representatives for the cosets S3/A3 so
that we can compute

Xr(0) = Xp(0) + X,((12)0(12)).
Hence the values of y, on the three conjugacy classes of S3 are given as follows:

lid (12) (123)
X=12 0 -1

which coincides with the character of the two-dimensional irreducible representation of S
that we found in Example 6.6 so that m must be equivalent to this representation and is
therefore irreducible.

Suppose now that H, K are two subgroups. For g € G we write
HgK ={hgk | he H, ke K}
for the double coset of g in the double quotient
H\G/K ={HgK | g € G}.

Note that there exists S C G such that G = | |, 4 HsK (disjoint union). Such S exists since
g~ h:& h e HgK is an equivalence relation. We fix such S for now.

Theorem 9.12 (Mackey’s Theorem). Let H, K, S be as before. Then for every F € C[K|#
we have
Res@Ind$ F = Z Indf  jco1Resiis o F*

seS

where F* € C[sKs™'|# is given by F*(x) = F(s 'zs).

Proof. For each s € S fix a set of representatives R, C H for H/(H N sKs™'). Then

H= |_| r(HNsKs™). (7)

TERS

We now claim that then for every s € S we have

HsK = |_| rsk.

TERS
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To prove this claim we first use (7) to get

HsK = U r(HNsKs)sK C U rsK C HsK

TGRS ’I’ERS

so that we are left to show that rsK N7sK = () for r,7 € R,, r # 7. For that suppose that
rsKN7sK # (. Then s~ 7 1rsK N K # () so that 7' € s7' KsN H. This implies therefore
r =7 so that the claim is proven.

We now write T, = Rgs = {rs | r € Rs}. By the claim that we just proved, T} is
a set of representatives for HsK/K. Write T' = | = |segTs Then T is a set of
representatives for the cosets G/ K.

Now let h € H and F € C[K]#. We can then compute:

IndF(h) =Y F(t'ht)=> "> F(s™'r 'hrs).

teT s€S reERs

SES

If F(s~'r~'hrs) # 0, then by the definition of F we must have r~'hr € sKs~'. Hence we
can continue our computation as follows:

md{F(h)=>" > F0hr) =Y Y Indifg o P hr)

SES r€Rs: seS reRs:
r~thresKs~1 r~thresKs—1

- Z Z In d;I[%‘;Ks—lF ( 1h7’) = ZIndgﬂsKs—lReSSHIr(ﬁi}(ls—lFs(h)

seS reRg sSES

which finishes the proof of the theorem. m

Definition 9.13. Let m and o be two finite dimensional complex representations of G. We
call m and o disjoint if no irreducible representation of G occurs as a subrepresentation of
both 7 and o.

Lemma 9.14. 7 and o are disjoint if and only if (xx, Xo) = 0.

Proof. Let my,...,my,ly,...,l, € Ny besuch that 7 ~ 7" @... &7 and 0 ~ Wil@. Y
Then (Xr, Xo) = D1y Mul; so that (xx, x») = 0if and only if m;l; = 0 for all ¢ which happens
if and only if 7 and ¢ are disjoint. O

The following is a consequence of Theorem 9.12:

Corollary 9.15 (Mackey’s irreducibility criterion). Suppose H < G is a subgroup, and o is a
finite dimensional complex representation of H. Then Indga 1s an 1rreducible representation
of G if and only if both of the following hold:

(i) o is irreducible

(ii) the representations Res™; . 0 and ResigiijJS of sHs™ N H are disjoint for all
se€ G, s¢ H. Here 0°(x) = (s 'zs) for v € sHs™*
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Proof. Write x = x,, and let S be a set of representatives for H\G/H. Without loss of
generality we can assume that 1 € S. Then by Mackey’s Theorem we obtain

G G. _ H sHs™1 s H sHs™ ! s
RespIndyx = E Indpyrsps-1Resyraps—1 X" = x + E Indyrsps-1ReSyrsms—1X
ses seS~{1}

where we used that for s = 1, HNsHs ! = H. Hence we can compute, using Frobenius
reciprocity in the first and last step:

(Ind§x, Indfx) = (x, ResGInd§x) = (x.x) + > (. Indfjr e Resiie g x)
seS~{1}

sHs™1 S
- <X7 X) + E : <ReSII‘{IQSHs—1X7 ReSHhFIWsHs—lx >
seS~{1}

For s € S~ {1} write a, := (Resf .1y, Resif2 o 1 y®). Note that (x, x) > 1, and in fact
(x,x) = 1 if and only if o is irreducible. Also note that a; > 0 for all s € S\ {1}.

Since Indga is irreducible if and only if (Indgx, Ind%x} = 1, this discussion therefore
implies that Ind%e is irreducible if and only if ¢ is irreducible and a, = 0 for all s € S~ {1}.
But a, = 0 if and only if Res},y.-10 and Resﬁ%‘ss};sfl are disjoint by Lemma 9.14. This

finishes the proof of the corollary. O

Remark 9.16. Suppose H is a normal subgroup of G. Then H\G/H = G/H and sHs™! =
H for all s € G. Mackey’s Theorem simplifies in this case (for K = H) to

Res%Ind% F = Z F*

SES

for all F € C[H]#, where S is a set of representatives for G/H. In this case Mackey’s
wrreducibility criterion therefore also simplies to: Indga is irreducible if and only if o is
irreducible and o and o® are disjoint for all s € S, s # 1.

Example 9.17. Let G = S3. Then H = Aj; is a normal subgroup of G and S = {id, (12)}
is a set of representatives for G/H. Note that Az is a cyclic subgroup of order 3 gen-
erated by the permutation (123). Define o : A3 — C* by ¢((123)) = €**/3 =: (. Then

12)((123)) o((213)) = ¢% # (¢ so that o and ¢(*?) are disjoint. The induced representation
Ind A‘"; o is therefore irreducible (and necessarily equivalent to the irreducible two-dimensional
representation of S3). We of course already proved this by direct computation in Exam-
ple 9.11.

Example 9.18. Let F, denote the finite field with p elements, p > 3 prime. Let
G={(3}) € GLy(F,) | a,d € F, b€ F,}
which is a group where the multiplication is given by matrix mutliplication. Let

H={(57) € GLa(F,) [ b € Fp}
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which is a normal subgroup of G. The set S = {(§5) | a,d € F)} is a set of representatives
for G/H. Note that H is an abelian group of order p generated by ug := (§ 1), G has order
p(p — 1)?, and S contains (p — 1)? elements. The irreducible complex representations of H
will therefore be of the form

Xc(ug') =¢™
where € is a (not necessarily primitive) p-th root of unity. Now if (¢9) € S it can easily be
checked that

Xs(u6n> _ gmd/a'
Hence x* and x are disjoint whenever a # d, and x* = x for all a = d € F;. Thus Indgx is
not irreducible.

10 Compact Groups and Peter-Weyl Theorem

In this section G denotes a compact topological group (for example, G might be finite).
This also means that we will assume implicitly from now on that all the finite dimensional
complex representations of G' that appear in this section are continuous, which means that
if (w,V) is a finite dimensional complex representation, then 7 is continuous if the map
m: G — GL(V) is continuous (recall that GL(V') is a topological group as explained in
Example 12.2).

Recall that we fixed a Haar measure on G such that G gets measure 1, and we denote
the corresponding integration by [, f(g)dg for f : G — C continuous (see §12.2). Recall
that the Haar measure is in fact left and right invariant by Remark 12.10. We thus obtain
an inner product on the vector space C(G) := {f : G — C continuous} defined by

(fi, f2) = /Gfl(g)mdg,

and this turns C'(G) into a pre-Hilbert space which we denote by Cy(G).

Example 10.1. If G is finite, then Cy(G) = C[G] together with the previously defined inner
product from Definition 8.1.

More generally, if X is a compact topological space with a given measure dr which is
normalized such that [ x dr =1, we denote by Cy(X) the pre-Hilbert space consisting of the
set C'(X) of all complex valued continuous functions on X together with the inner product

i fo) = /X L @B dr, fi, f € C(X).

Definition 10.2. We denote by Reg : G x G — GL(C%(G)) the two-sided regular repre-
sentation on the vector space Cy(G) given by

Reg(g, h)f(z) = f(h~ zg).

Note that (-, ) is invariant under Reg, that is, Reg is unitary with respect to (-, -).
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Note that we previously defined the two-sided regular representation of G on the space
C|[G] of all complex valued functions (see Definition 5.7) so that the representation defined
here is in fact a subrepresentation of that representation if we want to be completely precise.
We will, however, just write Reg for the two-sided regular representation of G on Cy(G) from
Now on.

Convention: If (7w, V) is a finite dimensional complex representation of G, we fix a
m-invariant inner product on V' and a basis B of V' which is orthonormal with respect to this
inner product. We then write

m5(9) = (aj;(9))ij=1,..nx

where n, = dim V.

We denote by R a complete set of representatives for the equivalence classes of finite
dimensional complex representations of G.

We will prove the following theorem only for the case that G is a subgroup of GL,(C)
for some n € N:

Theorem 10.3 (Peter-Weyl). The collection of all the functions a;, i,j =1,...,n,, m € R,
constitutes an orthogonal basis for Co(G) with respect to (-,-). More precisely,

Waﬂ_{WhU@$ﬂ=WMﬂ

ARG else
forallmmeR, i, 7=1,....n, pv=1,... . nz.

Remark 10.4. Note that ’basis’ here is understood in the Hilbert space sense, that is, the
basis generates a dense subspace of Co(G).

Example 10.5. We consider the circle group G = S' = {z € C | |z| = 1} which is a
compact topological group under multiplication. G is in fact homeomorphic to the compact
topological group R/Z via R/Z > 6 — €*™ € G and we can use this to write the integration

as
IR
| r@ds=5- [ reas

We already know that every irreducible finite dimensional complex representation of G must
be one-dimensional. In fact, R = {x, | n € Z} where

Xn - G — (CX, Xn<€27rz'o9) — 627rin9.

Those x,, are clearly pairwise distinct one-dimensional representations of (G. They are in
fact also all, since (e2”/ m)m = 1 so that every one-dimensional representation of G must be
of the form y,, for some n € Z.
Thus by Theorem 10.3 the set {x,, | n € Z} is an orthonormal basis of Cy(G) with respect
to the inner product
1

- 7 f1(e) fo(ei?) db.
2m Jo

(f1, f2)
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This allows us to recover the Fourier expansion for continuous 2m-periodic functions f :
R — C: If f is such a function, then there exist unique a,, € C, n € Z such that

f(@) = Z aan<€i9) = Z aneinG’

nez nez

and those coefficients can be computed via

1

an = (fixn) = 5~ i (@)= df

(in the inner product we view f as a function on G ~ R/Z).

Proof of Theorem 10.3. The orthogonality assumption of the theorem can be proven exactly

as in the case that (G is finite in Theorem 8.6 so that we don’t repeat the argument here.
We are left to prove completeness. For this we will assume that G is a subgroup GL,(C)

for some n € N. Recall that we write M (7) for the space of matrix coefficients of 7 € R.
Since G < GL,(C) we can write

9 = (ai;(9))ij=1,..n € GL,(C)

for suitable continuous functions a;; : G — C. In other words, the a;; are the matrix
coefficients of the identity representation G — GL,(C), g — g. We write C°(G) for the
vector subspace of C'(G) consisting of all functions on G that can be written as polynomials

in a;; and @, i, = 1,...,n. The Stone-Weierstrass Theorem implies that C°(G) is dense in
Cy (@) with respect to (-, -). The proof of Theorem 10.3 is finished once we prove Proposition
10.6 below. O

Proposition 10.6. With the notation as in the proof of Theorem 10.3 we have

(@) =P M(n).

TER

Proof. For each m € Ny we write C%™(G) for the vector subspace of C°(G) consisting of
functions on G that can be written as polynomials in a;;, @;;, ¢,7 = 1,...,n, of degree at
most m. For example, if m = 0, then C%°(G) consists of constant functions only.

Note that C%™(G) is invariant under Reg so that we can we define the right regular
representation R,, := Rcom( of G on the vector space C%™(G). Note that C*™(G) is
finite dimensional in contrast to C°(G) (which is infinite dimensional unless G is finite). By
Theorem 2.11 we can therefore find a finite subset R,, € R and k., € Ny, 7 € R,,, such that
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so that

C°(G) € @ M(R,) < P M(n).

meNp TER

For the other inclusion, suppose there exists Ty € R such that M(my) € C°(G). Then M (m)
is orthogonal to C°(G) and hence also to Co(G) which is a contradiction since M () consists
of continuous functions on G. O

Corollary 10.7. (i) If m,m are two irreducible finite dimensional complex representa-
tions of G, then

1 if m ~ m,

0 else.

<X7r17X7r2> = {

(i) If w is a finite dimensional complex representation of G, then w is irreducible if and
only if (X, Xx) = 1. O

10.1 Invariants

Similarly as in the finite group case in §6.1, we can consider a closed subgroup H < G and
define the subspaces

Co(G)" = {f € C2(G) |Vh e H.g € G f(gh) = f(9)}

and C°(G)H = C%G)NCy(G)H. Similarly as in the finite group case we can then show that

L ~ @ T

TER

where L denotes the left regular representation of G on C°(G)# and m, = dim V! with
V. the representation space of .

Moreover, C°(G)* is dense in Cy(G)H. This can be seen as follows: Let f € Cy(G) and
write f = Y » fr for suitable (and uniquely determined) f, € M (7). Then R(h)f = f for
all h € H if and only if R(h)f, = fr for all # € R and all h € H which in turn holds if and
only if f € @, . M(m)H = COG)H.

11 Example: Representations of SO(3) and SU(2)

11.1 Representations of SO(3)

Recall that SO(3) consists of all matrices g € GL3(R) which satisfy ¢g'g = 13 and det g = 1.
We want to study representations of SO(3) via its action on the sphere

Ty
S*i={r= x| eR| 2| = \/2}+ 2%+ 23 =1}
3
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SO(3) acts on S? via
g-x:= gz,

and this action leaves the usual Lebesgue measure on S? invariant. It is easily checked that
this action is transitive, and if we denote by eq := (0,0, 1)" the ’south pole’ of the sphere,
then the stabilizer of ey under the action of SO(3) equals

cosf sinf 0
H={|—sinf cosf 0] ]|0<0 <2} ~SO(2).
0 0 1

We therefore obtain a homeomorphism of topological spaces
SO(3)/H — S*, gH + gey,
and a representation L of SO(3) on Cy(S?) ~ C5(SO(3))%°®@ given by
L(g)f(z) = f(g™"x) (8)
for f € Cy(S?), v € S2.

Remark 11.1. One can show (see exercises) that if V. C Cy(S?) is finite dimensional sub-
space which is L-invariant, then there exists f € V' such that f(hz) = f(x) for all h € H,
r €S2

Recall the Laplace operator A on R3, that is, A is the differential operator given by
A=0]+0;+0;

where 0; = d/(dx;). For z € R® we write () := ||z||. Further define P := C[zy, x2, 23] to be
the complex vector space consisting of all polynomials in the variables x1, 9, x5 with complex
coefficients. Let P, C P denote the subspace consisting of homogeneous polynomials of

degree n so that
P = P.

neNg

We further define an inner product on P by
<p7 q> = (p<ala 827 63)Q) (0)
It will follow from Lemma 11.3(i) below that this is indeed an inner product on P.

Example 11.2. The definition of the inner product can look a bit strange, so we compute
some examples:

o (1,1) =1, (1,z1) =0 = (29, 1).

° <LE1, T1To2T3 + .T%> = 81($1;U2$3 + x%)‘xzo =0
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i <I’%, T1T2X3 + l'%) = 812(1‘11'21'3 + x%)lx:o =2

Lemma 11.3. (i) The set {x}'a52x5® | K1, ko, ks € No} is an orthogonal basis of P with

respect to (-,-). Moreover, (z{*x5?x5®, 7' x52x5?) = Kilkolks!

(ii) A and r* (i.e. multiplication by r(x)?) are adjoint operators with respect to (-, -).

Proof. (i) Note that 8f(x§”)|z:0 # 0 if and only if 1 = j and [ = m so that the orthogonality

follows. The inner product of x7*z52x5® with itself can be easily computed explicitly.

(i) It will suffice to show that 0; and multiplication by z; are adjoint. Without loss of
generality j = 1. Then

A1 A2 A3 K1, K2 K3\ __ A1—1_AX2 A3 K1 K2 K3
(O (7" 25 T3 ), 2ty T3 ) =A@yt 2 T3~ X1 Ty T3 )

- )\1‘)\2')\3| if A\ —1= K1, Ao = K2, A3 = K3,
o else.

On the other hand,

A1 A2 A3 K1 ,.K2 K3 A1 A2 A3 k1l k2 K3
<:r1 Lo T3, X1 " Ty Ty Ty ><I1 To"Tg™, Ty To Ty >

MM i N = Ky 4+ 1, A = Ko, A3 = ks,
0 else

so that 0y and multiplication by x; are indeed adjoint operators with respect to (-, ).
O

We define a representation 7 of SO(3) on P by
(m(9)p)(x) = plg™ ).

Note that for each n € Ny, the subspace P, is invariant under = and we denote the corre-
sponding subrepresentation by (7, P,) so that

Note that (-, ) is m-invariant. We further define the space of harmonic polynomials (i.e. the
kernel of A in P)

W={peP|Ap=0}
and write W,, = W N P,.
Corollary 11.4. For each n € Ny we have
Po=Wo@r'W, s &r'W, s ... &r*EW, 5

where || denotes the largest integer < n/2. Moreover, each summand on the right hand
side 1s w,-invariant.
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Proof. Note that W,, = ker Ajp, so that by Lemma 11.3(ii) we get P, = W, & r*P,_, (with
P_5:=0=:"P_1). Hence the asserted decomposition follows by induction on n. Regarding
the invariance of the summands it suffices to note that the function r : R® — R is invariant
under the action of SO(3) and that Ap(¢g~!) = 0 if and only if Ap = 0 for all g € SO(3). O

Let @ : P — C(S?) denote the linear map ®(p) = pjsz, and let Cy(S?) denote the
image of ® in C5(S5?). By Stone-Weierstrass Cy(5?) is dense in Cy(S?).

Lemma 11.5. ® intertwines m with L (L as defined in (8)). Moreover, if we restrict ® to Py,
then ®p, intertwines m, with the subrepresentation Lop,) of L, and ®p, : P, — ®(P,) is
i fact an isomorphism.

Proof. All assertions are immediate from the definitions with the exception of the injectivity
of ®1p, : P, — ®(P,). To prove injectivity let p € P, such that pg: = 0. Let z € R3,
r # 0, and write 7 := |z||7'z € S% Then p(x) = ||z||"p(Z) = 0, hence p = 0 proving
injectivity. [l

Theorem 11.6. We have

Cols?) = @ 2(W)

n€Ng

and each ®(W,,) is a minimal SO(3)-invariant subspace of dimension 2n + 1.
Moreover, we can find an orthonormal basis Yy —n,Yn i1y« Ynos - Yan of ®(W,)
such that each Y, ; is an eigenfunction for the action of SO(2), that is,

L(kg) Yy ; = €9V,

for all
cosf sinf 0
ko= | —sin@ cosf 0] € H ~SO(2).
0 0 1

Proof. Corollary 11.4 implies that

[n/2]
Co(8%) =D @(Pu) =D > B(Huox) = Y  O(Hy).
neNg neNg k=0 keNp
We now claim that
D(Pn) =D(W,) B P(W,2) ® ... 8 P(Wy_ons2)) (9)

is a decomposition of ®(P,) into minimal SO(3)-invariant subspaces, and that dim ®(W,,_;)5°?) =

1 for all k.
To prove this claim we write V = ®(P,). Let V =V, &...8V,, be a decomposition of V

into minimal invariant subspaces. By Remark 11.1 we have Vjso(z) #0forall j=1,...,m.
Hence [n/2] +1 < m < dim V39®)_ It will therefore suffice to show that in fact dim V50(2) =
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n/2] + 1. To see this we make a change of variables: Write u = 21 — izy € Py so that
u = x1 +ixy € Py. The collection of monomials {vu”x§ | p, v,k € No, p+ v + Kk = n} is
then a basis for P,,. Moreover, we can compute

cosf sinf 0 1 cosf —isinf '
L(kg)u= | —sinf cosf 0 —i| = | —sinf —icosh | =eu
0 0 1 0 0

(where we write w in the basis x1, xo, x3 for the matrix calculations), and therefore L(ky)u =
eu. Hence L(kg)u'u”zf = e ~M"yru¥z so that

L(ko)utu"zs = uu"xf Vky € SO2) & u=v. (10)

Hence
dimV = dim P5°® = #{v e Ny | 2v < n} = [n/2]

so that the decomposition in (9) must be indeed a decomposition into minimal invariant
subspaces, and the space of SO(2)-invariants in each such subspace has dimension 1.

So, by the claim we can find Y,,o € W,, (normalized to have length 1) such that
®(W,,)3°?® = CY,, . Furthermore, viewing ®(W,,) as an SO(2)-representation we obtain a
decomposition of ®(W,,) into one-dimensional subspaces, each invariant under SO(2). In fact
we now that each irreducible complex representation of SO(2) is of the form x; : SO(2) —
C*, xi(kg) = €' for some | € Z. Hence to understand the decomposition of ®(W,,) into
SO(2)-minimal subspaces it will suffice to compute the multiplicity with which each y; ap-
pears in ®(W,,). We first compute its multiplicity in P,, using an argument analogous to
(10):

L(ko)u'u’zf = e ur'u’ay Yk € SOQ2) & pu—v=1

so that the multiplicity of y; in P, equals

(1) € Ngx Ny | v —p = Land v <n) = #{n € No | p < (n— 1)/2)
:{LnTlJ-i-l it <n,

0 else.

Hence the multiplicity of x; in ®(W,,) equals

m —1 m—2-—1
T 1-— 1)=1
e
for l = —m,—m +1,...,m — 1,m (where we set Lm_TMJ+1:Oifm—2—l<0),and

we can accordingly choose normalized eigenfunctions Y,,; € ®(W,,). Their orthogonality
follows from the fact that ®(W,,) and ®(W,,) are orthogonal for m # n, and that x; #~ xx
for | # k. ]
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Corollary 11.7 (Fourier analysis on the sphere). For every f € C(S?) there exist unique
an; €C, j=—-n,...,n, n €Z such that

X S it
neZ j=—m
Moreover, the coefficients equal anj = [g f(2)Y,;(z) dz. O

Remark 11.8. The functions Y, ; are called spherical harmonics. They are in fact eigen-
functions for the spherical Laplace operator Agz2, more precisely,

A52Yn7j = —n(n + 1)Yn,j~

In particular, the eigenvalues of Agz in Co(S?) are exactly —n(n+1), n € Ny, each occurring
with multiplicity 2n + 1.
This spherical Laplacian Ag2 can be obtained from A by a change of variables: Write

x1 =rsinfcosp, xo=rsinfsing, x3=rcosb.

Then for a smooth function f : R?* — C we have

! ﬁ (7’2 sin@g) + %Ang

- r2sinf or or

so that we obtain in those new variables

T D TR -
Ag = —— (Lising L )
= Sind (ae(smeae) * sin@@ng)

Remark 11.9. One can compute the spherical harmonics Y, ; in terms of Legendre poly-
nomials: For n € Ny define

1 d°
P, = — [(z® = 1)"
n(7) 2nn! don [(x ) ]
and .
Pile) = (1 — 22y2.% p
Then

Y0, ) = eij‘PP,{ (cos0)

(with 0, the variables parametrizing S as introduced in the previous remark).
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11.2 Representations of SU(2)

We now consider the group

SU(2) = {9 € GLa(C) | 4" = 1, detg =1} = {(_“5 2) la,b€C, [af + [P =1},

which is a compact topological group. For n € Ny we define V,, to be the complex vector
space consisting of homogeneous polynomials in x and y of degree n so that dimV,, =n+ 1.
We define a representation (®,,V;,) of SU(2) b

©n(9)p(z,y) = p((w,y)9) = plaz + cy, br + dy)
for (¢b) € SU(2).
Theorem 11.10. ®,, is an irreducible representation of SU(2).
Proof. Write T = {diag(z,27 ') | z € C*, |z| = 1} C SU(2). Then for g = diag(z,2" ') € T

and p(x,y) = 2*y"* we get

D, (g)p(x,y) = 2 "p(z,y)

so that we obtain the decomposition
V, = @ Cayn* (11)

into one-dimensional vector spaces which are each invariant under the representation ResT ve o,
of T.

Now suppose U C V,, is a ®,-invariant subspace, U # 0. Then U is also ResT 2)<I> -
invariant so that because of (11) we have

U= @ Cakigynhi (12)
i=1

for suitable z1,..., 2, € {0,...,n}. Then r > 1 since U # 0. Let k € {kq,...,k.}. Then for
g=(%2) €8U(2) we get

o, (9)a*y"* = (ax — by)* (bx + ay)" Z ajaly™

where a,, = a*b"*. Hence when we choose a,b # 0, then a, # 0 and therefore 2" € U
because of (12). But then

®,(g)x" = (ax — by)" Zﬁjaﬂ nd

where f3; = :I:(?)ajl_)n_j # 0 when a,b # 0. Hence, again by (12), 27y € U for every
7=0,...,ns0that U =V,,. O

Remark 11.11. One can show (see exercises) that up to equivalence the ®,, n € Ny are all
irreducible finite dimensional complex representations of SU(2).
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11.3 Relation between representations of SO(3) and SU(2)

Our first goal in this section is to construct a continuous homomorphism of topological groups
U SU(2) — SO(3)

such that ker U = {£1}.
As a first step we consider the four dimensional R-vector space

w

H = {(_zz “’) € My(C)}.

We list some properties:

1) H is a four dimensional division algebra over R (with respect to the usual matrix
addition and multiplication): It is easy to see that H is closed under addition and
multiplication, and moreover, if A = ( % %) € H, A # 0, then

At L () oy
PP w2 '

2) The map

¢: H— RY (Z_ g) — (z,y,s,1)

where z = x + iy, w = s + it is an isomorphism of R-vector spaces.

3) The map H x H — R, (A, B) — [A, B] := (det(AB))/? defines an inner product on H
such that [A, A] = ||@(A)||? (where || - || denotes the usual Euclidean norm on R%).

4) We have SU(2) = {A € H | [A4, A] = 1}. In particular, SU(2) ~ S* (the unit sphere
in R*) via the isomorphism ¢ so that SU(2) is connected as a topological space. This
isomorphism can also be used to define a measure on SU(2) by taking the (normalized)
Lebesgue measure on S®. It is easily seen that this measure is invariant under the
action of SU(2), that is, it is the (normalized) left-invariant Haar measure on SU(2).

5) The representation SU(2) — GL(H), g — (X — ¢X) is orthogonal with respect to
['7 ]

Now consider the three-dimensional R-vector space

E:{(sz_t Sfx”) | 2,5t e R} = {iX | X € H, tr X = 0},

and define . .
W :SU(2) — GL(E) ~ GL3(R), ¥(g)A = gAg™,

where the isomorphism with GL3(R) is given by E 3 (%, ™) + (z,s,t) € R

s—it —x
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Remark 11.12. e iF C H is the orthogonal complement of the line R1y € H with respect
to ['7 ]

e I is a three-dimensional FEuclidean vector space with inner product
(A, B) = (—det(AB))Y2.
Note that (A, B) = [iA,iB].
Lemma 11.13. Im ¥ C SO(3). We write ¥ : SU(2) — SO(3), ¥(g) = ¥(g).

Proof. By above remarks U(g) is an orthogonal matrix for all g € SU(2). Moreover, since
V(1) = 13 € SO(3) and SU(2) is connected, we must have that Im ¥ C SO(3). O

Proposition 11.14. ¥ : SU(2) — SO(3) is a continuous surjective group homomorphism
with ker U = {£1,}.

Proof. We only need to prove surjectivity and the assertion about the kernel. We start with
the kernel. Let ¢ € SU(2). Then ¥(g) = 13 if and only if gAg~' = A for all A € E. This is
the case if and only if

1 0 -1 _ 1 0 0 VA -1 _ 0 z
9(0 —1)9 _(0 —1)’ andg(z o)g _(z o) vzeC.

The first property is satisfied if and only if ¢ is a diagonal matrix, that is ¢ = diag(w,w) for
some w € C!. The second property then becomes

0 w?z 0 z
(@ 0>_(z o) veel

which is satisfied if and only if z = £1, that is, g = £1,.
The surjectivity requires some preparation:

Claim 1:

For every A € E we can find g € SU(2) such that gAg™ € R0 (§%).

To see this let A € E. By the Spectral Theorem for Hermitian matrices, we now that the
eigenvalues «, 3 of A are real and that there exists a unitary matrix B such that BAB™! =
diag(a, B). Since tr A = 0 we must have a = —, and we can assume « > 0. If det B = 1 we
are done, if det B = —1, we multiply B by diag(1, —1) to obtain a matrix in SU(2). Ocaim 1

Claim 2:

Suppose H < SO(3) is a subgroup such that H acts transitively on S? (the unit sphere in
R3), and such that there exists a line in R3 such that H contains all rotations around this
line. Then H = SO(3).
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To see this let Rv C R? be the line that H stabilizes. We can assume that v € S?. Let
g € SO(3) so that gv € S?. By the transitivity of the action, there exists h € H such that
gv = hv, that is, h~'gv = v. This means that h~'g is a rotation around the line Rv so that
by assumption we have h='g € H, and therefore g € H. Cctaim 2

We now let H = Im¥ < SO(3). Note that S? ~ {A € F | det A = —1} so that by
Claim 1 H acts transitively on S?. By Claim 2 the proof of the proposition will therefore be
finished once we show the following:

Claim 3:

H contains all rotations around the line R (§ %) C F ~ R3.
To see this we compute for t € R, z € C,

et 0 1 z 1 ety
\Ij((O eit)) (E 1) o (e%tz 1 ) ’

that is, H contains all rotations around the line R (§ 9) as asserted. Octaim 3 O

Using the proposition we therefore obtain group homomorphisms
SU(2) — {+1,}\SU(2) — SO(3)

where the first map is just the projection p : SU(2) — {£15}\SU(2), and the second map,
which is an isomorphism of topological groups, is obtained from ¥. We thus get a bijection

{irred finite dim’l complex rep’'ns of SU(2) with kernel D {£1,}}

— {irred finite dim’l complex rep’ns of SO(3)}
given by m — o p. (Recall that for us representations of topological groups are always
continuous.)

Recall the representations (®,,V,) of SU(2), n € Ny, from §11.2 By the exercises we

know that {®,, | n € Ny} is a complete set of representatives of irreducible finite dimensional
complex representations of SU(2).

Lemma 11.15. ker ®,, > {£15} if and only if n is even.

Proof. We have ®,(—15)aFy" % = (—1)"zFy"~* so that ®,(—1,) acts trivially on V,, if and
only if n is even. O

Remark 11.16. One can in fact show that

ker @, — {1s}  n odd,
{£15} n even.

Recall the irreducible representations (waw,), ®(W,)) of SO(3) on the 2n+ 1-dimensional
vector space ®(WW,,) from Theorem 11.6.

Corollary 11.17. For alln € Ny we have ®9,0p = 7w, In particular, the representations
(Taw,), P(Wr)), n € Ny, give a complete list of representatives for the equivalence classes
of irreducible finite dimensional complex representations of SO(3). O
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12 Appendix

12.1 Topological Groups

Definition 12.1. A topological group is a group G whose underlying set is equipped with a
topology such that the two maps

G xG— G, (g,h) — gh,

and
G— G, gt—)g_l

are continuous with respect to this topology. (Here we equip G x G with the product
topology.)

Example 12.2. e We can obtain a topological group from any given group by equipping
it with the trivial or discrete topology.

e The groups (R, +), (R*,:), (C,+), and (C*,-) are topological groups when equipped
with the usual (Euclidean) topology.

e GL,(R) and GL,(C) are topological groups when we equip them with the subspace
topologies coming from M, (R) and M, (C), respectively. Here we canonically identify
M, (R) with R"* and M,,(C) with C"* via the matrix entries and use the usual Euclidean
topology on R™ and €. To see that the multiplication is indeed a continuous map,
note that if A = (aij)ij=1...n, B = (bij)ij=1,..n € GL,(R) (the same argument works
over C), then the matrix entries of the product AB will be polynomials in the a;; and
by, and therefore continuous maps. To see that A — A~! is continuous, we can use
Cramer’s rule to write

1
N detA(p”<

Ak, ]{Z,l = 1, ce ,n))@j:lwn

for suitable polynomials p;;. Those polynomials are again continuous functions in the
matrix entries of A, and moreover, det A is also continuous in the matrix entries, and in
fact non-zero in some small neighborhood of A. Hence A — A1 is indeed continuous.

e If V is a finite dimensional vector space over K = R or K = C, and we fix a basis of V/,
we obtain a group isomorphism GL(V) — GL,,(K). We use this to equip GL(V') with
a topology, and it is easily seen using the previous example that this turns GL(V') into
a topological group. Note that if we choose a different basis, the resulting topology will
be the same, so that we can consider GL(V') as a topological group with a canonical,
well-defined topology.

Definition 12.3. The last example allows us to define the notion of a continuous represen-
tation: A representation (m, V') of a topological group G on a real or complex vector space
is called continuous if the map 7w : G — GL(V) is a continuous map of topological spaces.
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Remark 12.4. If G s a topological group and H C G a subgroup, then H is also a topological
group when we equip it with the subspace topology coming from G.

Example 12.5. The subgroups SL,(R), SO(n), O(n) of GL,(R) are topological groups with
the subspace topology coming from GL,(R). Similarly, the subgroups SL,(C), SU(n), and
U(n) of GL,(C) are topological groups as well.

Example 12.6. The groups O(n), SO(n), SU(n), and U(n) are in fact compact topological
groups.

12.2 Haar measure

Definition 12.7. A left (resp. right) Haar measure on a topological group G is a Radon
measure 4 on GG such that for all ¢ € G and all Borel sets U C G we have u(gU) = u(U)

(resp. u(Ug) = u(U)).

Recall that the Borel g-algebra of a topological space is the o-algebra generated by all
the open sets, and an element of this o-algebra is called a Borel set.

Remark 12.8. If i is a left Haar measure, then i(U) := u(U™') is a right Haar measure,
and vice versa. Here for a Borel set U C G, U™t = {g~' | g € G} which is again a Borel set
since g — g~ ' is continuous.

Theorem 12.9. Suppose G is a locally compact topological group. Then there exists a left
(resp. right) Haar measure on p on G. Moreover, 1 is unique up to scalara multiplication,
that is, if fu is another left (resp. right) Haar measure, there exists X € R~ such that i = Ap.

See [Foll, Ch. 2.2] for a proof.

We will use this result only for G compact, and we again assume compactness from now
on. In this case we can normalize the Haar measure to be a probability measure, that is,
such that G has measure 1. The left (resp. right) Haar measure p defines an integration on
GG which we will denote by

| 1= [ 1(9)duts)
e e
for f € C(G). It satisfies the following properties:

e C(G)> f— [, f(g)dg € Cis a linear map in f.

o If f >0, f+#0, then
/Gf(g) dg >0 (13)

e For every f € C(G), z € G we have [, f(zg)dg = [, f(g9)dg (vesp. [, f(g9x)dg =
Jo £(9) dg).
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The first and last property are obvious. For the second one, let f > 0, f # 0, be continuous.
Then there exists € > 0 and open set U C G such that f > € on U. Once we show that U
has positive measure, we are done. For this suppose that u(U) = 0. Then also pu(gU) =0
for every ¢ € G. The collection {gU | ¢ € G} is an open covering of G, so since G is
compact, there exist finitely many ¢1,...,9, € G such that G = g;U U ... U g,U. But then
w(U) < w(giU) + ...+ p(qU) = 0 in contradiction to u(G) = 1.

Remark 12.10. One can in fact show that every compact topological group is unimodular,
that is, every left invariant Haar measure is also right invariant and vice versa (see [Foll,
Corollary (2.28)]). Hence the integral defined by the Haar measure is in that case both left
and right invariant.

Example 12.11. Suppose G is a finite group. Then G is a compact topological group when
equipped with the discrete topology. Define for U C G,

_ U]

M(U)—@‘

This is a left and right probability Haar measure on GG, and integration becomes

1
/Gf(g) dg = @Zf(g)-

geG

Example 12.12. The topological group U(1) = {4 € GL;(C) | AA* = 1,} = {z € C* |
zZ = 1} is just the circle group, and we have an isomorphism of topological groups given by
R/Z — U(1), 6 — €*™. Define for f € C(U(1))

/U 0= / ' f(e ) do.

It can easily be seen that this indeed defines a left and right probability Haar measure on
U(1).
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