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These are notes for the course Introduction to Representation Theory held
in 2022/23. Most of this is based on the books [Vinb] and [Stein]. The text will
be expanded throughout the term. Note that the text is not proofread, so be
careful when using it! I’m of course happy to here about typos and mistakes
you find, and I’d appreciate if you could send any errors you notice (or other
comments you might have) to matz@math.ku.dk.

1 Basic Definitions

Our general setup will be as follows:

• G is a group; very soon we will impose some additional conditions on G

• K is a field; we will usually assume that K = R or K = C

• V is a finite dimensional vector space over K.

We will write GL(V ) for the group of invertible linear endomorphisms V −→ V .

Remark 1.1. • The restriction to K ∈ {R,C} is usually not essential, but can be conve-
nient to avoid having to deal with some exceptional cases. As long as the characteristic
of K is 0 (and K is algebraically closed if necessary) most results will carry over.
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• The assumption that V is finite dimensional is more critical as infinite dimensional
representation theory is significantly more involved.

Initially, we define two notions of a representation:

Definition 1.2. A linear representation of G on V (over K) is a group homomorphism

π : G −→ GL(V ).

We will usually denote this representation by (π, V ) or just by π if V is understood from the
context.

• V is called the representation space of π.

• dimK V =: dimπ =: deg π is called the degree (or dimension) of π.

Definition 1.3. Let n ∈ N. A matrix representation of G over K of dimension (or degree)
n is a group homomorphism

π : G −→ GLn(K).

Remark 1.4. Given a matrix representation π : G −→ GLn(K) we can canonically attach
a linear representation by using the canonical isomorphism of groups GLn(K) −→ GL(Kn)
given via the standard basis {e1, . . . , en} of Kn.

Conversely, given a linear representation π : G −→ GL(V ) and a basis B = {v1, . . . , vn}
of V over K, we can attach a matrix representation πB : G −→ GLn(K) ≃ GL(Kn) (the
last isomorphism is the canonical one from before) which satisfies

πB(g)ej = φB(π(g)vj)

where φB : V −→ Kn is the isomorphism characterized by φB(vi) = ei, i = 1, . . . , n. In other
words, πB(g) is the matrix (aij)i,j=1,...,n such that

π(g)vj =
n∑

i=1

aijvj.

This matrix representation depends on the choice of basis. To make this construction more
’canonical’ we introduce the notion of equivalence next.

Definition 1.5. • Let (π1, V1), (π2, V2) be two linear representations of a group over the
same field K. We call π1 and π2 equivalent, written as (π1, V1) ≃ (π2, V2), or simply
π1 ≃ π2, if there exists a vector space isomorphism Φ : V1 −→ V2 such that

π1(g) = Φ−1 ◦ π2(g) ◦ Φ

for all g ∈ G.
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• If π1 : G −→ GLn1(K), π2 : G −→ GLn2(K) are two matrix representations of G,
we call π1 and π2 equivalent, denoted by π1 ≃ π2, if n1 = n2 =: n and there exists
A ∈ GLn(K) such that

π1(g) = A−1π2(g)A

for all g ∈ G.

Note that equivalence of (linear or matrix) representations is an equivalence relation on
the set of all (linear or matrix) representations.

Lemma 1.6. Let (π, V ) be a linear representation of G, and let B1, B2 be two bases for V .
Then πB1 ≃ πB2.

Conversely, if π1, π2 are two equivalent matrix representations of G, the corresponding
linear representations on Kn are then equivalent as well.

Proof. The second assertion is immediate from the above definitions. For the first assertion
note that the equivalence of πB1 and πB2 will be realized by the base change matrix that
changes B1 to B2.

Remark 1.7. This lemma therefore implies that we have a bijection between the set of
equivalence classes of matrix representations of G over K and the set of equivalence classes
of linear representations of G over K given by the maps above.

Convention: We’ll usually only be interested in linear or matrix representations up to
equivalence as all important properties are preserved under equivalency. We will therefore
in the following often not distinguish between linear and matrix representations, and just
speak of representations of G.

1.1 Examples

Example 1.8 (One-dimensional representations of R). Let K = R or K = C. Suppose
α ∈ K. Then

πα : R −→ GL1(K) = K×, πα(t) := eαt

defines a one-dimensional representation of the additive group R.
In fact, if we assume that the representation π : R −→ K× is differentiable, these are

all possible one-dimensional representation. (Here by a ’differentiable representation’ we
just understand a group homomorphism π : R −→ K× that happens to be a differentiable
function from R to K.) To see this let π : R −→ K× be a differentiable representation.
Then for all t ∈ R,

d

ds
π(t+ s)|s=0 =

d

ds
(π(t)π(s))|s=0 = π′(0)π(t).

We know from analysis that π therefore must be of the form π(t) = βeαt for suitable α, β ∈ K.
Since π(0) = 1, we get β = 1, hence π = πα.
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Example 1.9 (n-dimensional representations of R). Let K = R or K = C. For A ∈ Mn(K)
we define the matrix exponential eA by

eA =
∑
k≥0

Ak

k!
= 1n + A+

1

2
A2 +

1

6
A3 + . . .

where 1n denotes the n× n identity matrix.
We list several properties of this matrix exponential (see [Hall, Proposition 2.3]; or you

can check these properties yourself)

• The series defining eA converges absolutely for any A ∈ Mn(K) with respect to the
usual matrix norm on Mn(K).

• ∀A ∈ Mn(K): eA ∈ GLn(K)

• e0n = 1n where 0n denotes the n× n zero matrix

• ∀B ∈ GLn(K), A ∈ Mn(K): B−1eAB = eB
−1AB

• If A,B ∈ Mn(K) with AB = BA, then eA+B = eAeB. In particular, e−AeA = 1n, that
is, e−A is the inverse matrix of eA.

Using these properties, we see that if A ∈ Mn(K), then

πA : R −→ GLn(K), πA(t) = etA

defines an n-dimensional representation of the additive group R. In fact, one can show
similarly as above that if π : R −→ GLn(K) is a differentiable representation, we can find
A ∈ Mn(K) such that π = πA. (Again, we understand ’differentiable representation’ in the
naive way as being a representation π : R −→ GLn(K) which at the same time happens to
be a differentiable map R −→ Mn(K).)

Example 1.10 (Rotations in R2). We define

π : R −→ GL2(R), π(t) :=
(

cos(t) sin(t)
− sin(t) cos(t)

)
Geometrically, the matrix t represents the counterclockwise rotation by angle t around the
origin in R. To see that this is in fact a representation (which can also be checked by hand
using trigonometric identities), we’ll find a matrix A ∈ M2(R) such that π = πA. In fact, let

A =

(
0 1
−1 0

)
.

To see that this is the correct choice, note that

A2 = −12, A
3 = −A, A4 = 12.

We can therefore compute

etA =
∑
k≥0

Ak

k!
=

∑
k=2m,m≥0

(−1)m

(2m)!
12 +

∑
k=2m+1,m≥0

(−1)m

(2m+ 1)!
A = cos(t)12 + sin(t)A = π(t).
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Example 1.11. Consider the symmetric group Sn on n elements. For i, j = 1, . . . , n write
Eij ∈ Mn(C) for the matrix given by

(Eij)kl =

{
1 if (i, j) = (k, l)

0 else.

Define
π : Sn −→ GLn(C), π(σ) = E1σ(1) + . . .+ Enσ(n)

It can easily be seen that each of the matrices π(σ) is indeed invertible and that π(id) = 1n.
To see that it defines a group homomorphism note that

EijEkl =

{
Eil if j = k

0n else.

Hence for σ, τ ∈ Sn we get

π(σ)π(τ) =
n∑

i=1

Eiσ(i)

n∑
j=1

Ejτ(j) =
∑

i,j:σ(i)=j

Eiτ(j) =
n∑

i=1

Eiτ◦σ(i) = π(τ ◦ σ)

so that π is indeed a group homomorphism.
Note that this representation can also be defined by π : Sn −→ GL(Cn), π(σ)ej = eσ(j)

where e1, . . . , en denotes the standard basis of Cn.

Example 1.12. Suppose X is a finite set, G a group.
Recall : A group action of G on X is a map

G×X −→ X (g, x) 7→ g · x

such that e · x = x and g · (h · x) = (gh) · x for all x ∈ X, g, h ∈ G (here e denotes the
neutral element of G). Equivalently, a group action of G on X is a group homomorphism
G −→ S(G) := group of bijections X → X.

Suppose we are given a group action of G on X. Let VX denote the K-vector space of all
(formal) linear combinations of elements in X. Then VX is a K-vector space of dimension
|X|. In generalization of the previous example, we define

π : G −→ GL(VX), π(g)
∑
x∈X

axx :=
∑
x∈X

axg · x.

This is indeed a representation of G which can be checked similarly as in the previous
example.

Note that this representation is sometimes defined slightly differently: Let K[X] denote
the K-vector space of all functions X −→ K. Then given a group action of G on X we
define

π̃ : G −→ GL(K[X])
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by (π̃(g)f)(x) := f(g−1 · x) for f ∈ GL(K[X]), x ∈ X. π̃ is in fact equivalent to π as can be
seen from the vector space isomorphism

K[X] −→ VX , f 7→
∑
x∈X

f(x)x.

(In fact, π̃ is the dual of π as will become clear later.)

Example 1.13 (Left-/right-regular representation). Let G be a group, and let C[G] denote
the C-vector space of all functions G −→ C. G acts on itself from the left and right, that is,
we have a left action

G×G −→ G, (g, x) 7→ gx

and a right action
G×G −→ G, (g, x) 7→ xg−1.

These induce corresponding representations on C[G] as in the previous example, namely the
left regular representation of G

L : G −→ GL(C[G]), (L(g)f)(x) = f(g−1x),

and the right regular representation of G

R : G −→ GL(C[G]), (R(g)f)(x) = f(xg).

Note that when G is not finite one often considers the left-/right-regular representations on
slightly smaller subspaces of functions (e.g. continuous functions).

1.2 Invariant subspaces

Definition 1.14. Suppose (π, V ) is a representation of a group G, andW is a subvectorspace
of V . W is called invariant (with respect to π) if

π(g)W ⊆ W

for all g ∈ G.
If W ⊆ V is an invariant subspace, then (πW ,W ) with πW (g) := π(g)|W , g ∈ G, is again

a representation of G, and called a subrepresentation of π.

Remark 1.15. • We will sometimes say that a representation (σ, U) is a subrepresen-
tation of (π, V ) if σ is equivalent to an actual subrepresentation of π.

• If W1,W2 are two invariant subspaces of V , then W1 ∩ W2 and W1 + W2 are both
invariant again.

Example 1.16. Recall the representation π : Sn −→ GL(Cn), π(σ)ej = eσ(j) from Exam-
ple 1.11. Let W = C(e1 + . . .+ en) ⊆ Cn. Then W is an invariant subspace, and (πW ,W ) is
in fact equivalent to the trivial representation of Sn, that is, πW (σ) = idW for all σ ∈ Sn.
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Definition/Lemma 1.17. Suppose (π, V ) is a representation of G and W ⊆ V is an
invariant subspace. We define the quotient representation πV/W : G −→ GL(V/W ) by

πV/W (g)(v +W ) = π(g)v +W.

Then (πV/W , V/W ) is a well-defined representation of G on V/W . Moreover, if there exists
an invariant subspace W ′ ⊆ V such that V = W ⊕W ′, then πV/W ≃ πW ′.

Proof. To check that πV/W is well-defined, let v1, v2 ∈ V with v1 +W = v2 +W . Then for
all g ∈ G,

π(g)v1 − π(g)v2 = π(g)(v1 − v2) ∈ W

since W is invariant and v1 − v2 ∈ W . Hence πV/W is well-defined.
For the last assertion note that W ′ −→ V/W , w′ 7→ w′ +W defines an isomorphism of

vector spaces, and carries πW ′ to πV/W .

Definition 1.18. A representation (π, V ) of G is called irreducible if whenever W ⊆ V is
an invariant subspace, it follows that W = {0} or W = V .

Example 1.19. Every 1-dimensional representation is irreducible.

Example 1.20. Recall the representation π : R −→ GL2(R), π(t) =
(

cos(t) sin(t)
− sin(t) cos(t)

)
from

Example 1.10. π is irreducible. To see this, suppose that this was not true, that is, there
exists a (necessarily) 1-dimensional invariant subspace W ⊆ R2. Let v = (v1, v2) ∈ R2 be a
vector spanning W . Then

π(
π

2
)v =

(
−v2
v1

)
which is not contained in Rv, and therefore a contradiction to our assumption.

Example 1.21. Recall the representation π : Sn −→ GLn(C) from Example 1.11. We saw
that W = C(e1 + . . .+ en) is an invariant subspace so that π is not irreducible. Define

W ′ = {x ∈ Cn | x1 + . . .+ xn = 0}.

Then clearly Cn = W ⊕ W ′, and W ′ is invariant itself. Since W is 1-dimensional, the
subrepresentation (πW ,W ) is irreducible. We now also show that (πW ′ ,W ′) is irreducible as
well.

For this first note that {e1 − e2, e1 − e3, . . . , e1 − en} is a basis of W ′. Now let U ⊆ W ′

be an invariant subspace, U ̸= {0}. Let u ∈ U , u ̸= 0, and write u = a1e1 + . . . + anen
for suitable a1, . . . , an ∈ C. Since u ̸∈ W there must be i, j, i ̸= j such that ai ̸= aj. Let
(ij) ∈ Sn denote the permutation transposing i and j. Then

W ∋ π((ij))u− u = ajei + aiej − (aiei + ajej) = (aj − ai)(ei − ej) ̸= 0

so that ei − ej ∈ U . If i = 1, it follows that then also e1 − ek = π((jk))(e1 − ej) ∈ U and
thus U = W ′. If i ̸= 1, we first apply π((1i)) to reduce to the case i = 1.
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2 Complete Reducibility and Maschke’s Theorem

2.1 Basic definitions and properties

Definition 2.1. A representation (π, V ) is completely reducible if whenever W ⊆ V is an
invariant subspace, there exists an invariant subspace W ′ ⊆ V such that V = W ⊗W ′. In
other words, every invariant subspace of V admits an invariant complement.

Example 2.2. Every irreducible representation is completely reducible. The representation
π : Sn −→ GLn(C) as above is also completely reducible.

Example 2.3. The representation

π : R −→ GL2(C), π(t) :=
(
1 t
0 1

)
is not completely reducible. The subspace Ce1 spanned by e1 in C2 is clearly invariant, but
it does not have an invariant complement: If W ′ is a complement of Ce1 in C2 it must have
dimension 1, hence W ′ = Cv for some suitable v = (v1, v2)

t ∈ C2, v2 ̸= 0. But then

π(1)v − v =

(
v2
0

)
∈ W ∩W ′ = {0}

which is a contradiction since v2 ̸= 0.

In the next section we will prove that real and complex representation of finite or compact
groups are always completely reducible. As the last example shows, this is not necessarily
the case for other groups.

Proposition 2.4. Suppose (π, V ) is a completely reducible representation of G and (πW ,W )
a subrepresentation of (π, V ). Then (πW ,W ) is also completely reducible

Proof. Let (π, V ) and (πW ,W ) be as in the statement of the proposition. Let U ⊆ W be
an invariant subspace. Since π is completely reducible, there exists an invariant subspace
U ′ ⊆ V such that V = U ⊕U ′. Then W = U ⊕ (U ′ ∩W ) and by Remark 1.15 U ′ ∩W is also
invariant. Hence we’ve found an invariant complement to U in W so that πW is completely
reducible.

Corollary 2.5. Suppose (π, V ) is a completely reducible representation of G. Then there
exists minimal invariant subspaces W1, . . . ,Wr of V such that

V = W1 ⊕ . . .⊕Wr.

Note that an invariant subspace W ⊆ V , W ̸= 0, is minimal if and only if the subrepre-
sentation (πW ,W ) is irreducible.
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Proof. Recall that we assume throughout that all our representations are finite dimensional.
If π is irreducible, V is a minimal invariant subspace of itself, hence there is nothing to
show. We therefore assume that π is not irreducible. Let W ⊆ V be an invariant subspace,
W ̸= {0}, W ̸= V . By assumption there exists an invariant complement W ′ ⊆ V so that
V = W ⊕ W ′. Note that dimW, dimW ′ < dimV , and by Proposition 2.4 both (πW ,W )
and (πW ′ ,W ′) are completely reducible again. We continue this process until the resulting
subrepresentations are irreducible. Note that this requires only finitely many iterations since
dimV < ∞ and dimW, dimW ′ < dimV .

Theorem 2.6. Suppose (π, V ) is a finite dimensional representation of G. SupposeW1, . . . ,Wr ⊆
V are minimal invariant subspaces (all non-zero) such that

V = W1 + . . .+Wr (1)

(we don’t assume that this sum is direct). Then π is completely reducible. Moreover, for
every invariant subspace W ⊆ V there exists 0 ≤ l ≤ r and i1, . . . , il ∈ {1, . . . , r} (if l = 0,
the set of ij’s is understood to be empty) such that

V = W ⊕Wi1 ⊕ . . .⊕Wil . (2)

Proof. It will suffice to prove (2). LetW ⊆ V be an invariant subspace. Let I = {i1, . . . , il} ⊆
{1, . . . , r} be a maximal (potentially empty) subset such that the collection of subspaces
W,Wi1 , . . . ,Wil is linearly independent, that is

W +Wi1 + . . .+Wil = W ⊕Wi1 ⊕ . . .⊕Wil .

We call this sum U . If U = V , we are done. Hence we assume that U ⊊ V . Then because
of (1) there exists j ∈ {1, . . . , r} such that Wj ̸⊆ U , so in particular, Wj ̸= Wik , k = 1, . . . , l.
Since the Wj is minimal invariant, the intersection Wj ∩ Wik is therefore empty for each
k = 1, . . . , l, and for the same reason, Wj ∩ W = ∅. Hence the collection of subspaces
W,Wi1 , . . . ,Wil ,Wj is linearly independent in contradiction to the maximality assumption
of I. Thus U = V .

Example 2.7. Complete reducibility of πA equivalent to A being diagonalizable.

2.2 Orthogonal and Unitary Representations

From now on V will denote a finite dimensional real or complex vector space, and K accord-
ingly denotes R or C.

Recall : An inner product on V is a map

β : V × V −→ K

such that

• ∀v, w ∈ V : β(v, w) = β(w, v) (where the bar denotes complex conjugation; if K = R
this acts trivially and β is symmetric),

10



• ∀v1, v2, w ∈ V , α1, α2 ∈ K: β(α1v1 + α2v2, w) = α1β(v1, w) + α2β(v2, w),

• ∀v ∈ V ∖ {0}: β(v, v) > 0.

Definition 2.8. A representation (π, V ) of a group G is called orthogonal (if K = R) or
unitary (if K = C) if there exists an inner product β on V which is invariant under π, that
is

β(π(g)v, π(g)w) = β(v, w)

for all v, w ∈ V and all g ∈ G.

Proposition 2.9. Suppose (π, V ) is an orthogonal or unitary representation of G. Then π
is completely reducible.

Proof. Suppose (π, V ) is orthogonal or unitary, and let β be a π-invariant inner product on
V . Let W ⊆ V be an invariant subspace. Define

W ′ = {v ∈ V | ∀w ∈ W : β(v, w) = 0}.

From linear algebra we know that V = W ⊕ W ′. Hence it will suffice to show that W ′ is
invariant. Let g ∈ G, w′ ∈ W ′ and w ∈ W . Then

β(π(g)w′, w) = β(π(g)w′, π(g)π(g−1)w) = β(w′, π(g−1)w)

where we used the π-invariance of β for the last equality. SinceW is invariant, π(g−1)w ∈ W ,
hence β(w′, π(g−1)w) = 0 by definition of W ′. It follows that π(g)w′ ∈ W ′ so that W ′ is
indeed invariant.

2.3 Complete reducibility for finite and compact groups

Theorem 2.10 (Maschke’s Theorem). Every finite dimensional real or complex representa-
tion of a finite group G is completely reducible.

Proof. Let (π, V ) be a finite dimensional real or complex representation of G. Let β0 be
an (arbitrary) inner product on V (such an inner product can, for example, be found by
fixing an isomorphism V ≃ Kn and taking the standard inner product on Kn). Define for
v, w ∈ W

β(v, w) =
1

|G|
∑
g∈G

β0(π(g)v, π(g)w).

It is easily seen that β satisfies the first two properties of an inner product. For the positive
definiteness note that if v ∈ V , v ̸= 0, then β0(π(g)v, π(g)v) > 0 for each g ∈ G so that β is
positive definite as well. β is in fact also π-invariant: We have

β(π(h)v, π(h)w) =
1

|G|
∑
g∈G

β0(π(g)π(h)v, π(g)π(h)w) =
1

|G|
∑
g∈G

β0(π(gh)v, π(gh)w)

=
1

|G|
∑
x∈G

β0(π(x)v, π(x)w) = β(v, w)
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for all h ∈ G and all v, w ∈ V . Hence (π, V ) is orthogonal (if K = R) or unitary (if K = C)
so that by Proposition 2.9 π is completely reducible.

Suppose now that G is a compact topological group (see Appendix 12.1 for the definitions
and examples). All representations considered here are finite dimensional real or complex
continuous representations.

Theorem 2.11. Every finite dimensional continuous real or complex representation (π, V )
of a compact topological group G is completely reducible.

By Proposition 2.9 it will suffice to show the following:

Lemma 2.12. Let (π, V ) and G be as in Theorem 2.11. Then π is orthogonal or unitary
(depending on whether it is real or complex).

Proof. Recall that we fix a right invariant Haar measure on G. We will assume that we
normalized it so that G has measure 1. Let β0 be an (arbitrary) inner product on V . Define
β for v, w ∈ V by

β(v, w) =

∫
G

β0(π(g)v, π(g)w) dg

(note that G ∋ g 7→ β0(π(g)v, π(g)w) ∈ K defines a continuous function G → K). Then
β clearly satisfies the first two properties of an inner product. For the positive definiteness
use that β0 is positive definite together with property (13) of the Haar measure. We finally
check that β is π-invariant: For h ∈ G, v, w ∈ V we have

β(π(h)v, π(h)w) =

∫
G

β0(π(gh)v, π(gh)w) dg =

∫
G

β0(π(g)v, π(g)w) dg = β(v, w)

where we used that the Haar measure is right-invariant.

3 Constructing new representations from old ones

We continue to assume that all representations are finite dimensional and that K = R or
K = C.

3.1 The contragredient/dual representation

Suppose (π, V ) is a representation of G. Recall that the dual V ′ of V is the K-vector space
of all linear maps f : V −→ K.

Definition 3.1. The dual (or contragredient) of (π, V ) is the representation (π′, V ′) of G
defined by

π′(g)f(v) = f(π(g−1)v)

for g ∈ G, f ∈ V ′, v ∈ V .
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Note that this indeed defines a representation of G: If g, h ∈ G, then

π′(gh)f(v) = f(π((gh)−1)v) = f(π(h−1)π(g−1)v) = (π′(h)f)(π(g−1)v) = π′(g) ◦ π′(h)f(v).

Example 3.2. We want to work out what the dual representation looks like in terms of
matrices. Suppose V = Kn so that we canonically identify π with the matrix representation
π : G −→ GLn(K). Let e1, . . . , en denote the standard basis of Kn, and let ⟨·, ·⟩ denote the
standard inner product on Kn. Then a basis for the dual of Kn is given by the linear forms
⟨·, ej⟩, j = 1, . . . , n, and we identify (Kn)′ with Kn with respect to this basis. We can then
compute

π′(g)⟨·, ej⟩(ei) = ⟨π(g−1)ei, ej⟩ = (π(g−1)ei)
tej = etiπ(g

−1)tej

hence as a matrix representation we obtain

π′(g) =
(
π(g)−1

)t
.

Proposition 3.3. Let (π, V ) be as above. Then

1. (π′′, V ′′) ≃ (π, V )

2. π is irreducible if and only if π′ is irreducible.

Proof. (i) is clear. For (ii) suppose π is irreducible and let U ⊆ V ′ be invariant. Define

W := {v ∈ V | ∀f ∈ U : f(v) = 0}.

Then for v ∈ W and g ∈ G we get that f(π(g)v) = π′(g−1)f(v) = 0 for every f ∈ U since
U is invariant. Hence W is an invariant subspace of V , and thus W = {0} or W = V since
π is irreducible. But then U = V ′ or U = {0} and therefore π′ is irreducible as well. The
other direction follows from this together with (i).

3.2 Direct Sums

Definition 3.4. Suppose (πi, Vi), i = 1, 2 are two representations of a group G over the
same field K. We define the direct sum (π1 ⊕ π2, V1 ⊕ V2) as the representation of G given
by

π1 ⊕ π2(g)(v1, v2) = (π1(g)v1, π2(g)v2).

If (π1, V1), . . . , (πr, Vr) are representations of G, we inductively also define (π1⊕ . . .⊕πr, V1⊕
. . .⊕ Vr).

Remark 3.5. We clearly have (π1 ⊕ π2, V1 ⊕ V2) ≃ (π2 ⊕ π1, V2 ⊕ V1), and more generally if
σ is a permutation of {1, . . . , r}, (π1 ⊕ . . .⊕ πr, V1 ⊕ . . .⊕ Vr) ≃ (πσ(1) ⊕ . . .⊕ πσ(r), Vσ(1) ⊕
. . . ⊕ Vσ(r)). We therefore don’t always need to fix a specific order when taking direct sums
of representations, that is, if we are given representations (πi, Vi) for i in some finite index
set I, we might write

⊕
i∈I(πi, Vi) and this is well-defined up to equivalence.
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Example 3.6. We want to work out how direct sums look in terms of matrix representations.
Suppose (π1, V1), . . . , (πr, Vr) are representations, and B1, . . . ,Br are bases for V1, . . . , Vr,
respectively. Let πi,Bi

: G −→ GLni
(K) denote the corresponding matrix representation,

where ni = dim πi. Then B = B1 ∪ . . . ∪ Br is a basis of V = V1 ⊕ . . . ⊕ Vr (we use the
ordering of B obtained by concatenating the Bi’s), and writing π := π1 ⊕ . . . ⊕ πr and
n = n1 + . . .+ nr we obtain

πB : G −→ GLn(K), πB(g) =


π1,B1(g)

π2,B2(g)
. . .

πr,Br(g)


which is a block diagonal matrices with blocks of size ni × ni on the diagonal.

We collect some basic results on direct products:

Theorem 3.7. A representation (π, V ) of G is completely reducible if and only if there exists
irreducible representations (π1, V1), . . . , (πr, Vr) of G such that π ≃ π1 ⊕ . . .⊕ πr.

Proof. This is just Corollary 2.5 and Theorem 2.6 in terms of direct sums of representations.

Theorem 3.8. Suppose (π, V ) ≃ (π1, V1) ⊕ . . . ⊕ (πr, Vr) with π1, . . . , πr irreducible. Then
if W ⊆ V is invariant, there exists I, J ⊆ {1, . . . , r} such that

(πW ,W ) ≃
⊕
i∈I

(πi, Vi), and (πV/W , V/W ) ≃
⊕
j∈J

(πj, Vj).

Proof. Suppose W ⊆ V is invariant. By Theorem 2.6 there exists J ⊆ {1, . . . , r} such that

(π, V ) ≃ (πW ,W )⊕
⊕
j∈J

(πj, Vj)

so that
(πV/W , V/W ) ≃

⊕
j∈J

(πj, Vj).

For πW note that (πW ,W ) ≃ (πV/
⊕

j∈J Vj
, V/

⊕
j∈J Vj) so that this case also follows from the

case of the quotient representation.

Corollary 3.9. Suppose (πi, Vi), i = 1, . . . , r, are pairwise non-equivalent irreducible sub-
representations of (π, V ). Then V1, . . . , Vr are linearly independent subspaces of V .

Proof. Suppose V1, . . . , Vr are not linearly independent. Let 1 ≤ m < r such that V1, . . . , Vm

are linearly independent, but V1, . . . , Vm, Vm+1 are not. Then Vm+1∩ (V1⊕ . . .⊕Vm) is a non-
zero invariant subspace of V , and hence also of Vm+1. Since πm+1 is irreducible, this implies
that Vm+1∩ (V1⊕ . . .⊕Vm) = Vm+1, that is, Vm+1 ⊆ (V1⊕ . . .⊕Vm). By Theorem 3.8 πm+1 is
therefore equivalent to

⊕
i∈I πi for some suitable I ⊆ {1, . . . ,m}. Because of irreducibility,

|I| = 1, say I = {i0}, but then πm+1 ≃ πi0 in contradiction to the pairwise¨ non-equivalence
of the πi’s.
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Corollary 3.10. Suppose

(π, V ) ≃ (π1, V1)⊕ . . .⊕ (πr, Vr) ≃ (σ1,W1)⊕ . . .⊕ (σs,Ws)

for some irreducible representations (π1, V1), . . . , (πr, Vr), (σ1,W1) . . . , (σs,Ws) (all non-zero).
Then r = s and there exists a bijection φ : {1, . . . , r} −→ {1, . . . , r} such that (πi, Vi) ≃
(σφ(i),Wφ(i)) for i = 1, . . . , r.

Proof. We argue by induction on r. When r = 1, π ≃ π1 is irreducible, hence s = 1 and
π1 ≃ σ1.

Now suppose that r > 1. By Theorem 3.8 there exists I ⊆ {1, . . . , r} such that

(σ1,W1) ≃
⊕
i∈I

(πi, Vi).

Since σ1 is irreducible, |I| = 1, and after reordering the πj’s we can without loss or generality
assume that I = {1}, that is, (σ1,W1) ≃ (π1, V1). But then

s⊕
j=1

(σj,Wj) ≃ (πV/W1 , V/W1) ≃ (πV/V1 , V/V1) ≃
r⊕

i=2

(πi, Vi)

so that we can now apply the induction hypothesis and obtain the assertion of the corollary.

3.3 Tensor products

Definition 3.11. Let (π, V ), (σ,W ) be two representations of G over K. We define the
tensor product of π and σ as the representation π⊗ σ of G on the tensor product V ⊗W of
V and W given by

π ⊗ σ(g)v ⊗ w = π(g)v ⊗ σ(g)w

Recall that dimV ⊗W = dimV · dimW , so if π has dimension n and σ has dimension
m, π ⊗ σ will have dimension nm.

Remark 3.12. • Clearly, (π ⊗ σ, V ⊗W ) ≃ (σ ⊗ π,W ⊗ V ).

• If π has dimension 1, then we can identify π with a homomorphism G −→ K×, and
π ⊗ σ : G −→ GL(V ⊗ W ) is equivalent to the representation G −→ GL(W ), g 7→
π(g)σ(g).

Example 3.13. We can write the tensor product in terms of matrices as follows: Suppose
B = {v1, . . . , vn} is a basis of V , and C = {w1, . . . , wm} is a basis of W . Let φB : V −→ Kn,
and φC : W −→ Km denote the corresponding isomorphisms which satisfy φB(vi) = ei and
φC(wj) = fj (where the ei and fj denote the standard basis of Kn, Km, respectively). Note
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that we have a canonical isomorphism Kn ⊗Km −→ Mn×m(K) given by ei ⊗ fj 7→ eif
t
j so

that we get an isomorphism

φB,C : V ⊗W −→ Mn×m(K), φB,C(v ⊗ w) = φB(v)φC(w)
t.

Recall the matrix representations πB : G −→ GLn(K), σC : G −→ GLm(K) which are
characterized by

φB(π(g)vi) = πB(g)ei, and φC(σ(g)wj) = σC(g)fj.

Hence using the isomorphism φB,C we see that π ⊗ σ is equivalent to the representation

Π : G −→ GL(Mn×m(K))

given by
Π(g)A = πB(g)AσC(g)

t.

Example 3.14. Suppose (π, V ) is a representation of G of dimension n. Consider

π ⊗ π′ : G −→ GL(V ⊗ V ′).

Fix some basis for V and the corresponding dual basis for V ′. Then we know from Example
3.2 that in terms of matrices π′(g) = (π(g)−1)

t
(we suppress the dependency on the fixed

basis here). Hence combined with the preivous example, π ⊗ π′ is equivalent in terms of
matrices to

G −→ GL(Mn(K)), g 7→
(
A 7→ π(g)Aπ(g)−1

)
,

that is, π ⊗ π′ ≃ Ad ◦ π, where Ad : GLn(K) −→ GL(Mn(K)) is the adjoint representation
Ad(x)A = xAx−1 from Exercise 9. We know from Exercise 9 that Ad is not irreducible,
hence π ⊗ π′ ≃ Ad ◦ π will not be irreducible either.

Definition 3.15. Suppose H is another group, (π, V ) is a representation of G and (σ,W ) is
a representation of H. We define the external tensor product of π and σ as the representation
π × σ of G×H on V ⊗W given by

(π × σ) (g, h)v ⊗ w = π(g)v ⊗ σ(h)w

for (g, h) ∈ G×H and v ⊗ w ∈ V ⊗W .

We will later show that if π and σ are both irreducible, then so is π×σ. This is not true
for π ⊗ σ as can be seen from Example 3.14.

Remark 3.16. If H = G, and ∆ : G ↪→ G × G, ∆(g) = (g, g), denotes the diagonal
embedding, then

(π × σ) ◦∆ = π ⊗ σ.

Example 3.17. Consider the embedding ι1 : G ↪→ G×H, ι1(g) = (g, 1). Then (π×σ)◦ι1 ≃
πdimσ as G-representations (that is, πdimσ is the direct sum of dimσ-many copies of π). This
can be seen as follows: Fix a basis w1, . . . , wm of W . Then V ⊗ W =

⊕
i=1,...,m V ⊗ wi,

and each V ⊗ wi is invariant under π × σ ◦ ι1, and the corresponding subrepresentation is
isomorphic to (π, V ).

Similarly, if we consider the embedding ι2 : H −→ G×H, ι2(h) = (1, h), then (π×σ)◦ι2 ≃
σdimπ as H-representations.
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4 Intertwining Operators and Schur’s Lemma

4.1 Intertwining Operators

Definition 4.1. Suppose (πi, Vi), i = 1, 2, are representations of G over the same field K.
An intertwining operator from π1 to π2 is a linear map Φ : V1 −→ V2 such that

Φ ◦ π1(g) = π2(g) ◦ Φ

for all g ∈ G. In this situation we say that Φ intertwines π1 with π2.

Remark 4.2. • π1 ≃ π2 is equivalent with the existence of a bijective intertwining oper-
ator from π1 to π2.

• In general, an intertwining operator does not need to be a bijection. For example, the
zero map Φ : V1 −→ V2, v 7→ 0, intertwines π1 with π2.

Example 4.3. Suppose (π1, V1), (π2, V2) are representations of G, and put (π, V ) = (π1 ⊕
π2, V1 ⊕ V2). Let Φ : V1 −→ V , v1 7→ (v1, 0). Then Φ intertwines π1 with π.

Theorem 4.4. (i) Suppose (π1, V1), (π2, V2) are irreducible representations of G and Φ is
an intertwining operator from π1 to π2. Then either Φ ≡ 0 or Φ is an isomorphism.

(ii) Suppose (π, V ) is a representation of G, and V = V1⊕ . . .⊕Vr with V1, . . . , Vr minimal
invariant subspaces of V such that πVi

̸≃ πVj
for all i ̸= j. Then for every invariant

subspace U ⊆ V , U ̸= 0, there exists {i1, . . . , il} ⊆ {1, . . . , r} such that

U = Vi1 ⊕ . . .⊕ Vil .

The indices i1, . . . , il are uniquely determined by U up to ordering.

(Note that we already know this to be true up to isomorphism, see Theorem 3.8.)

Proof. (i) Suppose Φ intertwines π1 with π2, and π1 and π2 are both irreducible. Let
v ∈ kerΦ. Then for all g ∈ G,

Φ(π1(g)v) = π2(g)Φ(v) = 0

so that kerΦ is an invariant subspace of V1. Because of the irreducibility of π1, Φ is
therefore either injective or ≡ 0. Now let w ∈ ImΦ, say w = Φ(v) for a suitable v ∈ V1.
Then for all g ∈ G, π2(g)w = π2(g)Φ(v) = Φ(π1(g)v) so that the image of Φ is also
an invariant subspace of V2. Using the irreducibility of π2 we therefore get that Φ is
either ≡ 0 or surjective. Putting this together with the first half of the argument we
obtain that either Φ ≡ 0 or Φ is an isomorphism.
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(ii) Since (π, V ) is completely reducible, (πU , U) will be so as well, hence there exist minimal
invariant subspaces U1, . . . , Ul ⊆ U such that U = U1 ⊕ . . . ⊕ Ul. For i = 1, . . . , l and
j = 1, . . . , r consider the linear maps

Φij : Ui ↪→ U ↪→ V −→ Vj,

where the first two maps are the natural inclusions and the last map is the projection
from V onto Vj along the complement

⊕
k ̸=j Vk. It is easily checked that Φij inter-

twines πUi
with πVj

, hence since Ui and Vj are both minimal invariant, Φij is either an
isomorphism or ≡ 0 by the first part of the theorem. If Φij is an isomorphism, it must
in fact be the identity map by definition. Moreover, since V = V1 + . . . + Vr, for each
i there must exist ji such that Φiji is the identity. Hence U = V1j1 ⊕ . . .⊕ Vljl .

Remark 4.5. If Φ is an intertwining operator, then kerΦ and ImΦ are always invariant
subspaces independently of whether π1 and π2 are irreducible or not.

4.2 Schur’s Lemma

Theorem 4.6 (Schur’s Lemma). Suppose (π, V ) is an irreducible finite dimensional complex
representation of G. Let Φ be an intertwining operator from π to itself. Then there exists
α ∈ C such that Φ = αidV .

Proof. Since V is finite dimensional and complex, Φ must have an eigenvalue, say α ∈ C,
with eigenvector v ∈ V , v ̸= 0, that is,

(Φ− αidV )v = 0.

Therefore the endomorphism Φ−αidV : V −→ V is not an isomorphism. But Φ−αidV still
intertwines π with itself, hence by Theorem 4.4 it must vanish identically.

Remark 4.7. • Schur’s Lemma is not true for real representation as R is not closed.
One can, however, replace C by another algebraically closed field.

• The finite dimensionality of the representations (which we always assume) is also es-
sential for Schur’s Lemma, though under certain circumstances a version of Schur’s
Lemma can also be proven for certain infinite dimensional representations using the
spectral theorem for self-adjoint operators.

4.3 Consequences of Schur’s Lemma

Corollary 4.8. Suppose (π, V1), (π2, V2) are irreducible finite dimensional complex repre-
sentations of G. Then

dimC Hom(π1, π2) =

{
1 if π1 ≃ π2,

0 else,

where Hom(π1, π2) denotes the C-vector space of all intertwining operators Φ : V1 −→ V2

from π1 to π2.
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Proof. If π1 ̸≃ π2, then by Theorem 4.4 we have Hom(π1, π2) = {0}. Now suppose that
π1 ≃ π2 and fix an isomorphism Φ0 : V1 −→ V2 intertwining π1 with π2. Let Φ ∈ Hom(π1, π2).
Then Φ−1

0 ◦Φ : V1 −→ V1 is an intertwining operator of π1 with itself, hence by Schur’s Lemma
there exists α ∈ C with Φ = αΦ0 so that dimCHom(π1, π2) = 1.

Corollary 4.9. Suppose (π, V ) is an irreducible finite dimensional complex representation
of G. Let U be a finite dimensional complex vector space, and let σ denote the trivial
representation of G on U (that is, σ(g) = idU for all g ∈ G).

Suppose W ⊆ V ⊗ U , W ̸= 0, is a minimal invariant subspace with respect to the
representation π ⊗ σ of G. Then there exists u ∈ U such that W = V ⊗ u.

Proof. Let m = dimU and let {u1, . . . , um} denote a basis of U . Recall that π ⊗ σ is
equivalent to a direct sum of m-copies of π. Hence if W ⊆ V ⊗ U is minimal invariant,
we have ((π ⊗ σ)W ,W ) ≃ (π, V ). Fix an isomorphism Φ0 : W −→ V . We define m
homomorphisms ϕi : V ⊗ U −→ V by the property that for all x ∈ V ⊗ U we have

x = ϕ1(x)⊗ u1 + . . .+ ϕm(x)⊗ um.

Then for every x ∈ V ⊗ U , g ∈ G, we get on the one hand that

π ⊗ σ(g)x = (π(g)ϕ1(x))⊗ u1 + . . .+ (π(g)ϕm(x))⊗ um

and on the other,

π ⊗ σ(g)x = ϕ1(π ⊗ σ(g)x)⊗ u1 + . . .+ ϕm(π ⊗ σ(g)x)⊗ um.

Hence ϕi(π⊗σ(g)x) = π(g)ϕi(x) for all i, g ∈ G, x ∈ V ⊗U so that the restrictions (ϕi)|W ∈
Hom((π ⊗ σ)W , π). Hence by Corollary 4.8 there exist αi ∈ C such that (ϕi)|W = αiΦ0.
Hence for all x ∈ W we get

x = ϕ1(x)⊗ u1 + . . .+ ϕm(x)⊗ um = Φ0(x)⊗ (α1u1 + . . .+ αmum) =: Φ0(x)⊗ u.

Corollary 4.10. Suppose (π, V ) is an irreducible finite dimensional complex representation
of G, and (σ,W ) is an irreducible finite dimensional complex representation of another group
H. Then (π × σ, V ⊗W ) is an irreducible representation of G×H.

Proof. Let U ⊆ V ⊗ W , U ̸= 0, be an invariant subspace with respect to π × σ. Let
π0 : G −→ GL(W ) denote the trivial representation of G on W . Then U is also an invariant
subspace of the representation (π ⊗ π0, V ⊗W ) of G. By Corollary 4.9 there exists w ∈ W ,
w ̸= 0, such that V ⊗ {w} ⊆ U .

For v ∈ V we now define

Wv := {w′ ∈ W | v ⊗ w′ ∈ U}.

Wv is clearly σ-invariant, hence Wv = {0} or Wv = W because of the irreducibility of σ.
Since w ∈ Wv for all v, it follows that Wv = W for all v ∈ V . Hence U = V ⊗W so that
π × σ is irreducible.
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Corollary 4.11. Suppose G is abelian, and (π, V ) is an irreducible finite dimensional com-
plex representation of G. Then π has dimension 1.

Proof. Since G is abelian, we get for all g, h ∈ G,

π(g) ◦ π(h) = π(gh) = π(hg) = π(h) ◦ π(g)

so that π(h) : V −→ V is an intertwining operator of π with itself for every h ∈ G. Hence by
Schur’s Lemma, there exists αh ∈ C such that π(h) = αhidV . Clearly, the map G −→ C× =
GL1(C), h 7→ αh is a group homomorphism, hence π is equivalent to this 1-dimensional
representation, and therefore must be 1-dimensional itself because of irreducibility.

4.4 Commutator subgroups

The main result Corollary 4.17 of this section are a consequence of Corollary 4.11.
Recall:

Definition 4.12. Let G be a group. The commutator subgroup [G,G] of G is the subgroup
of G generated by all the commutators

[g, h] := ghg−1h−1 ∈ G, g, h ∈ G.

Remark 4.13. G is abelian if and only if [G,G] = {1}.

Lemma 4.14. The commutator subgroup [G,G] is a normal subgroup of G, and the abelian-
ization A(G) := G/[G,G] of G is an abelian group.

Remark 4.15. The abelianization of G is the largest abelian quotient of G.

Proof of Lemma 4.14. First let g, h, x ∈ G. Then

x[g, h]x−1 = [xgx−1, xhx−1] ∈ [G,G]

so that [G,G] is a normal subgroup of G. Now if x̃ := x[G,G], ỹ := y[G,G] ∈ A(G), then

x̃ỹx̃−1ỹ−1 = xyx−1y−1[G,G] = 1[G,G]

so that A(G) is abelian.

Lemma 4.16. Suppose N is a normal subgroup of G, and let p : G −→ G/N denote the
projection. Then

{representations of G/N} −→ {representations of G with kernel containing N}, π 7→ π ⊗ p

is a bijection. This bijection is also true, when we add properties such as ’finite-dimensional’,
’complex’, or ’irreducible’, etc on both sides

Proof. This is clear from the definition of p.
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Corollary 4.17. Let p : G −→ G/[G,G] = A(G) denote the projection. Then the map

{1− dimensional complex representations of G}
−→ {irreducible finite dimensional complex representations of A(G)}

given by π 7→ π ◦ p is well-defined and a bijection.

Proof. By Lemma 4.16 and Corollary 4.11 it will suffice to show that the irreducible finite
dimensional complex representations of G whose kernel contain [G,G] are exactly the 1-
dimensional ones. Every such representations whose kernel contains [G,G] is 1-dimensional
by Corollary 4.11. On the other hand, if π is a 1-dimensional representation of G, then the
image of π is a commutative group, hence π([g, h]) = 1 for all g, h ∈ G so that [G,G] ≤
kerπ.

Example 4.18. Let G = Sn. Let sgn : G −→ {±} denote the signum character, that is
sgn(σ) = 1 if σ is even, and sgn(σ) = −1 if σ is odd. One can show that [Sn, Sn] = An =
ker sgn, the alternating group on n-elements. Since Sn/An ≃ {±1} it follows from Corollary
4.17 that Sn has exactly two 1-dimensional complex representations, namely the trivial one,
and sgn.

5 Matrix Coefficients

Recall that
C[G] = C− v.s. of all maps f : G −→ C.

Definition 5.1. Suppose (π, V ) is a finite dimensional complex representation. Let B =
{v1, . . . , vn} be a basis for V and write

πB(g) = (aij(g))i,j ∈ GLn(C) (3)

with respect to this basis. The space

M(π) := spanC{aij | i, j = 1, . . . , n} ⊆ C[G]

is called the space of matrix coefficients of π and the functions aij : G −→ C are called
matrix elements of π.

Definition 5.2. We fix some notation:

• For a linear map ϕ : V −→ V we write

trϕ : G −→ C, g 7→ tr(π(g) ◦ ϕ).

• For v ∈ V and f ∈ V ′ (V ′ the dual space of V ) we write

µf,v : G −→ C, g 7→ f(π(g)v).
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Proposition 5.3. We have

M(π) = {trϕ | ϕ ∈ Hom(V, V )} = spanC{µf,v | v ∈ V, f ∈ V ′}.

In particular, M(π) is independent of the choice of basis of V used to initially define M(π).

Proof. Let {v1, . . . , vn} be as above, and let {f1, . . . , fn} be a dual basis of V ′.
Let f = α1f1 + . . .+ αnfn ∈ V ′ and v = β1v1 + . . .+ βnvn ∈ V . Then for g ∈ G

µf,v(g) = f(π(g)) =
∑
i,j

αiβjfi(π(g)vj) =
∑
i,j

αiβjaij(g)

(with aij(g) as in (3)). Hence M(π) equals the span of the µf,v.
Now if A ∈ Hom(V, V ) write A as a matrix with respect to B, that is (αij)i,j ∈ Mn(K).

Then for g ∈ G,

trA(g) = tr ((aij(g))i,j(αkl)k,l) =
∑

i,j=1,...,n

aij(g)αji

so that M(π) also equals the collection of the trA.

Remark 5.4. The map V ′×V −→ M(π), (f, v) 7→ µf,v is bilinear, hence we obtain a unique
linear map V ′ ⊗ V −→ M(π).

Example 5.5. • If π is one-dimensional, π is just a homomorphism G −→ C× and
M(π) = Cπ.

• If π ≃ σ, then M(π) = M(σ).

• If π ≃ π1 ⊕ . . .⊕ πr (the πj don’t need to be irreducible), then M(π) = M(π1) + . . .+
M(πr).

Lemma 5.6. The vector space M(π) is invariant under left and right translation by elements
of g, that is, for all F ∈ M(π) and all g ∈ G, we have F (g·), F (·g) ∈ M(π).

Definition 5.7. The representation Reg : G×G −→ GL(C[G]) defined by

Reg(g, h)F (x) = F (h−1xg)

is called the two-sided regular representation of G. For each finite dimensional complex
representation π of G we write

Regπ : G×G −→ GL(M(π))

for the corresponding subrepresentation of Reg on M(π).

Proof of Lemma 5.6. Let f ∈ M(π). We can assume that F = trφ for some φ ∈ Hom(V, V ).
Then for all g, x ∈ G:

F (gx) = tr(π(gx)φ) = tr(π(g)π(x)φπ(g)π(g)−1) = tr(π(x)φπ(g)) = trφπ(g)(x)

where we used that the trace is invariant under conjugation. Hence F (g·) = trφπ(g) ∈ M(π).
Also, F (xg) = tr(π(x)π(g)φ) = trπ(g)φ(x), hence F (·g) = trπ(g)φ ∈ M(π).
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Theorem 5.8. Suppose (π, V ) is an irreducible finite dimensional complex representation.
Then π × π′ ≃ Regπ via the isomorphism

Φ : V ⊗ V ′ −→ M(π), v ⊗ f 7→ µf,v.

Proof. We show first that Φ is an intertwining operator. Let g, h, x ∈ G. Then

Φ(π ⊗ π′(g, h)v ⊗ f)(x) = Φ((π(g)v)⊗ (π′(h)f))(x) = µπ′(h)f,π(g)v(x)

= f(π(h−1)π(x)π(g)v) = µf,v(h
−1xg) = (Regπ(g, h)µf,v) (x)

so that indeed Φ intertwines π×π′ with Regπ. Since Φ is surjective by definition, it remains
to show that Φ is injective. By Corollary 4.10 (π×π′, V ⊗V ′) is irreducible. Since the kernel
of an intertwining operator is invariant, it must therefore be either {0} or the whole space.
Because we already know that the map is surjective, the kernel must thus be {0}.

Corollary 5.9. Suppose (π, V ) is an irreducible finite dimensional complex representation.
Then dimM(π) = (dim π)2.

Proof. This is clear from Theorem 5.8.

Corollary 5.10. Suppose π1, π2 are irreducible finite dimensional complex representations
of G. If π1 ̸≃ π2, then Regπ1

̸≃ Regπ2
.

More generally, if π1, . . . , πm are irreducible finite dimensional complex representations
of G which are pairwise non-equivalent, then M(π1), . . . ,M(πm) are linearly independent
subspaces of C[G].

Proof. The second assertion follows immediately from the first one together with Theo-
rem 2.6. It will therefore suffice to show that if Regπ1

≃ Regπ2
, then π1 ≃ π2. Suppose that

Regπ1
≃ Regπ2

. Let σi denote the restriction of Regπi
to the subgroup G× {1} of G. Then

clearly, σi ≃ RM(πi), where RM(πi) denotes the right regular representation of G on M(πi).

We claim that RM(π) ≃ πdimπi
i (i.e., the direct sum of dim πi-many copies of πi). Assuming

this claim, we can conclude that if Regπ1
≃ Regπ2

, then σ1 ≃ σ2 which then implies that
π1 ≃ π2 because of the claim and irreducibility of π1 and π2.

To prove the claim recall that M(πi) ≃ Vi ⊗ V ′
i . For g, x ∈ G, µf,v ∈ M(πi) we get(

RM(πi)(g)µf,v

)
(x) = µf,v(xg) = f(πi(xg)v) = µf,πi(g)v(x)

so that (RM(πi),M(πi)) ≃ (1 ⊗ πi, Vi ⊗ V ′
i ) ≃ π

dimV ′
i

i where (1, Vi) denotes the trivial repre-
sentation of G on Vi. Hence the claim follows from dimV ′

i = dimVi.

6 Matrix coefficients for finite groups

In this section we assume throughout that G is a finite group and all representations are
complex even if not explicitly mentioned.
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Theorem 6.1. (i) Every complex irreducible representation of G is finite dimensional.

(ii) Up to equivalence G has only finitely many (in fact at most |G|-many) irreducible
complex representations.

(iii) Every irreducible complex representation of G is equivalent to a subrepresentation of
the right regular representation R : G −→ GL(C[G]).

Proof. Let (π, V ) be an irreducible complex representation of G.

(i) Let v ∈ V , v ̸= 0, and let U = spanC{π(g)v | g ∈ G}. Then U ̸= 0 is an invariant
subspace of V , hence U = V because of the irreducibility of π. Since G is finite,
dimV = dimU ≤ |G| < ∞.

(iii) By (i) and the proof of Corollary 5.10 we know that RM(π) ≃ πdimπ, hence π is
equivalent to a subrepresentation of (RM(π),M(π)) which is in turn a subrepresentation
of (R,C[G]).

(ii) Suppose π1, . . . , πr are pairwise inequivalent irreducible complex representations. The
collection M(π1), . . . ,M(πr) are by Corollary 5.9 therefore linearly independent so that

r ≤ dimM(π1) + . . .+ dimM(πr) = dimM(π1)⊕ . . .⊕M(πr) ≤ dimC[G] = |G|.

Theorem 6.2. Suppose π1, . . . , πr is a complete list of representatives for the equivalence
classes of irreducible complex representations of G. Then

C[G] = M(π1)⊕ . . .⊕M(πr). (4)

Proof. We already know that the right hand side of (4) is contained in C[G]. Note that if
we define for x ∈ G the map

δx : G −→ C, δx(g) =

{
1 if x = g,

0 else,

then {δx | x ∈ G} is a basis of C[G]. It will therefore suffice to show that δx ∈ C[G] for each
x ∈ G.

By Maschke’s Theorem, (R,C[G]) is completely reducible, that is R ≃ πm1
1 ⊕ . . . ⊕ πmr

r

for suitable integers m1, . . . ,mr ∈ N0. Define ϵ : C[G] −→ C by ϵ(f) = f(1) where 1 ∈ G
denotes the unit element of G. Hence ϵ ∈ C[G]′ and we can consider

µϵ,δx(g) = ϵ(R(g)δx) = δx(g) =

{
1 if x = g,

0 else.

Hence
δx = µϵ,δx ∈ M(R) = M(πm1

1 ⊕ . . .⊕ πmr
r ) = M(π1) + . . .+M(πr)

which finishes the proof.
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Corollary 6.3. Let π1, . . . , πr be as in Theorem 6.2. Then

|G| = (dimπ1)
2 + . . .+ (dim πr)

2 .

Proof. This is immediate from Theorem 6.2 and dimC[G] = |G|.

Corollary 6.4. Let the notation be as in Theorem 6.2. Then

R ≃ πdimπ1
1 ⊕ . . .⊕ πdimπr

r .

Proof. Recall that RM(π) ≃ πdimπi
i , hence the corollary follows from Theorem 6.2.

Example 6.5. Suppose G is finite and abelian. Then dim πi = 1 for all i. Hence up to
equivalence G has exactly |G|-many inequivalent irreducible representations, each of dimen-
sion 1.

Example 6.6. Let G = S3. Then |G| = 6, and the only way to write this as a sum of squares
is as 1 + 1 + 1 + 1 + 1 + 1 or 1 + 1 + 22. In the exercises it was shown that if all irreducible
representations of a group are 1-dimensional, then G is abelian, which is not the case here.
(Alternatively, we know from Example 4.18 that S3 has exactly two 1-dimensional represen-
tations.) Hence G must have two non-equivalent 1-dimensional representations (which we
already found), and one irreducible 2-dimensional representation. In fact, we already know
what this 2-dimensional representation is: It is the permutation representation of S3 on the
2-dimensional vector space

V = {(x1, x2, x3) ∈ C3 | x1 + x2 + x3 = 0}.

Example 6.7. Let G = S4. Then |G| = 24. We know that G has exactly two non-equivalent
1-dimensional representations, namely the trivial representation χ0 and the signum repre-
sentation χ = sgn, and we also found an irreducible 3-dimensional representation, namely
the permutation representation π on the 3-dimensional space

V = {(x1, x2, x3, x4) ∈ C4 | x1 + x2 + x3 + x4 = 0}.

We obtain another irreducible 3-dimensional on V by multiplying with χ, that is, (χπ, V ),
and one can show that this is not equivalent to π. Now 24 − 1 − 1 − 32 − 32 = 22 so that
we are missing one irreducible 2-dimensional representation. To find this two-dimensional
representation consider the Klein group

H = {1, (12)(34), (13)(24), (14)(23)}

which is a normal subgroup of S4 with the property that S4/H ≃ S3 (we identify those two
groups). Let (σ,W ) denote the irreducible 2-dimensional representation of S3 and define σ̃ :
S4 −→ GL(W ) by σ̃(g) = σ(gH), which then gives the missing 2-dimensional representation
of S4.

25



6.1 Invariants2

Suppose G is a finite group and H ≤ G a subgroup. Then G acts on the coset space G/H
by left multiplication, that is by g · xH = gxH. We get a corresponding representation

πH : G −→ GL(C[G/H]), πH(g)f(xH) = f(g−1xH).

Lemma 6.8. The linear map

φ : C[G/H] −→ C[G]H := {f : G −→ C | ∀g ∈ G, h ∈ H : f(gh) = f(g)}, f 7→ f ◦ p,

where p : G −→ G/H is the projection, is a bijective intertwining operator of πH with
LC[G]H , where LC[G]H denotes the subrepresentation of the left regular representation of G on
the subspace C[G]H ⊆ C[G].

Proof. Clear from the definitions.

Theorem 6.9. Suppose (π1, V1), . . . , (πr, Vr) is a complete list of representatives for the
equivalence classes of irreducible complex representations of G. Let νi : Vi ⊗ V ′

i −→ M(πi)
be the isomorphism from Theorem 5.8. Then

C[G/H] ≃
r⊕

i=1

νi(V
H
i ⊗ V ′

i )

where V H
i denotes the subspace of H-invariants, that is,

V H
i = {v ∈ Vi | ∀h ∈ H : πi(h)v = v}.

Proof. Recall that C[G] = M(π1) ⊕ . . . ⊕ M(πr), and each M(πj) is invariant under right
translation. Hence

C[G/H] ≃ C[G]H = M(π1)
H ⊕ . . .⊕M(πr)

H

where M(πj)
H denotes the subspace if H-fixed vectors (under right translation) in M(πj).

We rewrite this space as follows:

M(πj)
H = {F ∈ M(πj) | ∀h ∈ H : F (·h) = F}

= {νj(x) | x ∈ Vj ⊗ V ′
j , ∀h ∈ H : Regπj

(h, 1)νj(x) = νj(x)}
= {νj(x) | x ∈ Vj ⊗ V ′

j , ∀h ∈ H : νj(πj × π′
j(h, 1)x) = νj(x)} = νj(V

H
j ⊗ V ′

j )

which is exactly what we were looking for.

Corollary 6.10. Let the notation be as in Theorem 6.9. Then

πH ≃ π
mH

1
1 ⊕ . . .⊕ πmH

r
r

where mH
j = dimV H

j .

2We’ve skipped this section in class for now, but we’ll come back to it later
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Proof. It follows as in the proof of Corollary 5.10 that for each j the homomorphism νj gives
an equivalence between the representations 1H⊗π′

j and LM(πj)H where 1H denotes the trivial
representation of G on V H

j . Hence

πH ≃ LC[G]H = LM(π1)H ⊕ . . .⊕ LM(πr)H ≃ (π′
1)

dimV H
1 ⊕ . . .⊕ (π′

r)
dimV H

r

= π
dim(V ′

1)
H

1 ⊕ . . .⊕ πdim(V ′
r )

H

r

where the last equality follows from the fact that each π′
j is irreducible, hence must be equal

to one of π1, . . . , πr, say π′
j ≃ πk, so that then dimV H

j = dim(V ′
k)

H .
It will therefore suffice to show that dimV H

j = dim(V ′
j )

H . We will in fact show the
following: If (σ,W ) is a completely reducible representation ofH, then dimWH = dim(W ′)H .
To see this let σ1, . . . , σl denote a complete list of representatives for the equivalence classes
of irreducible representations of H with σ1 being the trivial representation. Write σ ≃
σn1
1 ⊕ . . . ⊕ σnl

l for suitable n1, . . . , nl ∈ N0. Then dimWH = n1. On the other hand, we

can also write σ′ ≃ σ
n′
1

1 ⊕ . . . ⊕ σ
n′
l

l for suitable n′
1, . . . , n

′
r ∈ N0. As discussed before, the

numbers n′
1, . . . , n

′
l agree with n1, . . . , nl up to permutation and ni = n′

j if σi ≃ σ′
j. Since

the trivial representation is equivalent to its dual, it therefore follows that n1 = n′
1, that is,

dimWH = dim(W ′)H .

7 Character Theory

For now we don’t need to assume anything about our group G, but all our representations
are finite dimensional over R or C even if not explicitly mentioned.

Definition 7.1. Let (π, V ) be a finite dimensional real or complex representation of G.
Then

χπ : G −→ C, χπ(g) := tr π(g)

is called the character of π.

Note that χπ ∈ M(π).

Example 7.2. • If π has dimension 1, that is, π : G −→ K×, then χπ = π. Hence if
G is abelian and finite, we sometimes call its irreducible complex representations its
characters.

• If 1V : G −→ GL(V ) denotes the trivial representation on a finite dimensional vector
space V , then χ1V (g) = dimV for all g ∈ G.

• Recall the representation π : R −→ GL2(R), π(t) =
(

cos(t) sin(t)
− sin(t) cos(t)

)
from Example 1.10.

Then χπ(t) = 2 cos(t).

• Recall the representation π : Sn −→ GLn(C) which sends σ ∈ Sn to the corresponding
permutation matrix from Example 1.11. Then

χπ(σ) = |{m ∈ {1, . . . , n} | σ(m) = m}| = # number of fixed points of σ.
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7.1 Basic properties of characters

We collect some basic properties of characters for π, σ finite dimensional representations of
G (1 denotes the unit of G):

(i) χπ(1) = dim π

(ii) π ≃ σ ⇒ χπ = χσ

(iii) χπ⊕σ = χπ + χσ

(iv) ∀g ∈ G : χπ′(g) = χπ(g
−1)

(v) χπ⊗σ = χπχσ

(vi) ∀g, h ∈ G : χπ(g
−1hg) = χπ(h)

Moreover, if H is another group, π a finite dimensional representation of G, and σ a finite
dimensional representation of H, then

(vii) χπ×σ(g, h) = χπ(g)χσ(h)

for g ∈ G, h ∈ H.
All those properties are immediate from the definition.

Remark 7.3. If we apply (i) to the right regular representation R of a finite group G, we
get

|G| = dimR = χR(1) =
r∑

i=1

dimπiχπi
(1) =

r∑
i=1

(dimπi)
2

where π1, . . . , πr are representatives for the equivalence classes of irreducible complex repre-
sentations of G.

Definition 7.4. A function f ∈ C[G] is called a class function or central function if it is
constant on conjugacy classes of G, that is, for all g, h ∈ G, we have f(g−1hg) = f(h). We
also write

C[G]# = {class functions f ∈ C[G]}.

Characters are therefore class functions, that is, χπ ∈ C[G]#.

7.2 Characters of finite groups

Theorem 7.5. Suppose G is finite and π1, . . . , πr is a complete list of representatives for
the equivalence classes of irreducible complex representations of G. Then

C[G]# = Cχπ1 ⊕ . . .⊕ Cχπr

28



Proof. Because of (4) it will suffice to show that C[G]# ∩M(πj) = Cχπj
.

Recall that M(πj) = {trA | A ∈ Hom(V, V )} with trA(g) = tr(πj(g)A). Suppose that trA
is a class function. Then for all g, h ∈ G,

trA(h) = tr(πj(h)A) = tr(πj(g)
−1πj(h)πj(g)A) = tr(πj(h)πj(g)Aπj(g)

−1) = trπj(g)Aπj(g)−1(h).

Since πj is irreducible, the map Hom(Vj, Vj) −→ M(πj), A 7→ trA defines an isomorphism,
hence it follows that A = πj(g)Aπj(g)

−1. Hence A is an intertwining operator of πj so that
by Schur’s Lemma, there exists α ∈ C such that A = αidVj

. Hence

trA(h) = trαidVj (h) = tr(απj(h)) = αχπj
∈ Cχπj

.

Corollary 7.6. Suppose G is finite. Then the number of equivalence classes of irreducible
complex representations of G equals the number of conjugacy classes in G.

Corollary 7.7. Suppose G is finite. Then any finite dimensional complex representation of
G is uniquely determined (up to equivalence) by its character.

Proof. Let π be a finite dimensional complex representation of G, and let m1, . . . ,mr ∈ N0

be such that π ≃ πm1
1 ⊕ . . .⊕πmr

r . Then χπ = m1χπ1 + . . .+mrχπr , and the mj are uniquely
determined since χπ1 , . . . , χπr are a basis of C[G]#.

8 Schur orthogonality

In this section G is a finite group. We denote by (π1, V1), . . . , (πr, Vr) a complete list of
representatives for the equivalence classes of irreducible complex representations of G, and
by χ1, . . . , χr the corresponding characters.

Recall the two-sided regular representation Reg : G×G −→ GL(C[G]).

Definition 8.1. We equip C[G] with the inner product

⟨f1, f2⟩ =
1

|G|
∑
g∈G

f1(g)f2(g)

for f1, f2 ∈ C[G].

Lemma 8.2. ⟨·, ·, ⟩ is Reg-invariant, that is, for all g, h ∈ G, and all f1, f2 ∈ C[G] we have

⟨Reg(g, h)f1,Reg(g, h)f2⟩ = ⟨f1, f2⟩.

Proof. We compute:

⟨Reg(g, h)f1,Reg(g, h)f2⟩ =
1

|G|
∑
x∈G

f1(h
−1xg)f2(h−1xg) =

1

|G|
∑
y∈G

f1(y)f2(y) = ⟨f1, f2⟩

where we used the bijection G −→ G, x 7→ y := h−1xg in the second equality.
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8.1 Invariant inner products

Theorem 8.3. Suppose (π, V ) is a fintie dimensional complex representation of G, and
B1, B2 are π-invariant inner products on V . Then there exists α ∈ R>0 such that B1 = αB2

Proof. See Exercise 18.

Theorem 8.4. Suppose (π, V ) is a finite dimensional complex representation of G. Let
U,W ⊆ V be minimal invariant subspaces such that πU ̸≃ πV . Let B be a π-invariant inner
product on V . Then U and W are orthogonal with respect to B.

Proof. Let p : U ↪→ V −→ W denote the orthogonal projection with respect to B. Then
p is clearly an intertwining operator from πU to πW , thus ≡ 0 since πU and πW are not
equivalent. Now for all u ∈ U , w ∈ W we also have

B(u,w) = B(u− p(u), w) +B(p(u), w) = B(p(u), w)

hence, B(u,w) = 0 since p ≡ 0.

An immediate consequence of this is the following:

Corollary 8.5. The subspaces M(π1), . . . ,M(πr) of C[G] are orthogonal with respect to ⟨·, ·⟩.

We can be even more precise: Fix a πi-invariant inner product Bi on Vi for each i, and
let Bi denote an orthonormal (with respect to Bi) basis of Vi. Write

πi,Bi
(g) = (a(i)κµ(g))κ,µ=1,...,ni

∈ GLni
(C)

where ni = dimπi.

Theorem 8.6. The set

{a(i)κ,µ | i = 1, . . . , r, µ, κ = 1, . . . , ni}

is an orthogonal basis for C[G] with respect to ⟨·, ·, ⟩. More precisely,

⟨a(i)κ,µ, a
(j)
λ,ν⟩ =

{
1
ni

if i = j, (κ, µ) = (λ, ν),

0 else.

Proof. We already know that a
(i)
κµ and a

(j)
λν are orthogonal if i ̸= j. We therefore fix i = j and

drop this index from the notation for the remainder of the proof, that is, we write n = ni,
V = Vi etc. Define an inner product (·, ·) on Mn(C) ≃ End(V ) (where the isomorphism is
with respect to the fixed basis) by

(A,B) = tr(AB
t
).

Consider the representation ρ : G×G −→ GL(Mn(C)) given by

ρ(g, h)A = πB(h)
−1AπB(g).
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Then (·, ·) is invariant with respect to ρ since πB(h)
−1 = πB(h)

t
since our chosen basis

is orthonormal with respect to the π-invariant inner product. Moreover, the isomorphism
Mn(C) −→ M(π), A 7→ trA, gives the equivalence ρ ≃ RegM(π). Hence via this isomorphism
we obtain another RegM(π) invariant inner product on M(π), which therefore coincides with
⟨·, ·⟩ up to some positive real constant, that is, there exists α > 0 such that for all A,B ∈
Mn(C) we have (A,B) = α⟨trA, trB⟩.

Recall the definition of the matrix Eij ∈ Mn(C) which has entry 1 at position (i, j) and
0s else. Note that trEij

(g) = tr(πB(g)Eij) = aij(g). Hence we get

α⟨aij, aµν⟩ = α⟨trEij
, trEµν ⟩ = (Eij, Eµν) =

{
1 if (i, j) = (µ, ν),

0 else.

We are left to show that α = n. For that first note that the fact that π is unitary with
respect to the fixed inner product on V implies that

n∑
j=1

aij(g)akj(g) =

{
1 if i = k,

0 else.

This therefore implies that

1 =
1

|G|
∑
g∈G

n∑
j=1

aij(g)akj(g) =
n∑

j=1

⟨aij, aij⟩ = n/α,

hence α = n.

Corollary 8.7. χ1, . . . , χr is an orthonormal basis of C[G]#.

Proof. For each i we have χi(g) =
∑

k=1,...,ni
a
(i)
kk(g). Hence by Theorem 8.6 we have ⟨χi, χj⟩ =

0 if i ̸= j. If i = j, we get also by Theorem 8.6

⟨χi, χi⟩ =
∑

k,l=1,...,ni

⟨a(i)kk, a
(i)
ll ⟩ =

∑
k=1,...,ni

⟨a(i)kk, a
(i)
kk⟩ = ni

1

ni

= 1.

Corollary 8.8. If (π, V ) is a finite dimensional complex representation of G, then

π ≃
⊕

i=1,...,r

π
⟨χπ ,χi⟩
i .

Proof. We already know that π ≃
⊕

i=1,...,r π
mi
i for suitable uniquely determined mi ∈ N0.

The assertion then follows from χπ = m1χ1 + . . .mrχr together with Corollary 8.7.

Corollary 8.9. Let (π, V ) be a finite dimensional complex representation of G. Then π is
irreducible if and only if ⟨χπ, χπ⟩ = 1.

Proof. Write π ≃
⊕

i=1,...,r π
mi
i for suitable uniquely determined mi ∈ N0. Then ⟨χπ, χπ⟩ =

m2
1 + . . .+m2

r so that π is irreducible if and only if ⟨χπ, χπ⟩ = 1.
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8.2 Orthogonality Relations

We still assume in this section that G is finite, π1, . . . , πr is a complete list of representatives
for the equivalence classes of irreducible complex representations for G, and χ1, . . . , χr are
their characters.

Recall the inner product on C[G] we introduced in the last section: For F1, F2 ∈ C[G],

⟨F1, F2⟩ =
1

|G|
∑
g∈G

F1(g)F2(g).

Recall that χ1, . . . , χr is an orthonormal basis of C[G]# with respect to ⟨·, ·⟩.
The character table of G collects information on the characters and irreducible represen-

tations of G in a table. Let g1 = 1, g2, . . . , gr ∈ G be representatives for the conjugacy classes
C1 = {1}, C2, . . . , Cr of G (recall from Corollary 7.6 that the number of conjugacy classes in
G coincides with r), and let mj = |Cj|, j = 1, . . . , r. Then the character table of G looks as
follows:

1 m2 m3 . . . mr

1 g2 g3 . . . gr
1 = π1 1 1 1 . . . 1

π2 χ2(1) χ2(g2) χ2(g3) . . . χ2(gr)
...

...
...

...
...

...
πr χr(1) χr(g2) χr(g3) . . . χr(gr)

Note that we in fact know the entries in the first column: χi(1) = dim πi, i = 1, . . . , r.
We might also view this as an r × r-matrix (χi(gj))i,j=1,...,r ∈ Mr(C). Because of the or-
thonormality of the basis χ1, . . . , χr of C[G] we get

1

|G|

r∑
j=1

mjχµ(gj)χν(gj) =

{
1 if µ = ν,

0 else,
(5)

that is the rows of the matrix

C :=

(√
mj√
|G|

χµ(gν)

)
µ,ν=1,...,r

constitute an orthonormal basis of Cr so that CC
t
= 1r (where 1r is the r × r identity

matrix). Hence C is a unitary matrix so that we immediately also obtain orthonormality of
the columns:

Corollary 8.10. For every g, h ∈ G we have

r∑
j=1

χj(g)χj(h) =

{
|G|
mi

if g, h are conjugate, say g, h ∈ Ci,

0 else.
(6)
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The two equalities (5) and (6) together are usually called the Schur orthogonality relations

Example 8.11. Suppose G is the cyclic group of order m. We take G = Z/mZ for con-
creteness. Then G is abelian, thus has m-conjugacy classes and m (equivalence classes of)
irreducible complex representations, each of dimension 1. In fact, they are given by

χj(k) = ζk(j−1), j = 1, . . . ,m,

where ζ is a primitive mth root of unity (for example ζ = e2πi/m). The character table of G
then looks as follows:

1 1 1 . . . 1
0 1 2 . . . m− 1

1 = χ1 1 1 1 . . . 1
χ2 1 ζ ζ2 . . . ζm−1

χ3 1 ζ2 ζ4 . . . ζ2(m−1)

...
...

...
...

...
...

χm 1 ζm−1 ζ2(m−1) . . . ζ(m−1)2

Example 8.12. Take G = S3. Then G has three conjugacy classes, represented by 1,
(12), and (123). The classes have cardinality 1, 3, and 2, respectively. We already know
the irreducible representations in this case: We have two one-dimensional ones, namely the
trivial representation 1 : S3 −→ C×, and sgn : S3 −→ C×, and we have one two-dimensional
irreducible representation π. The character table of S3 therefore looks as follows:

1 3 2
1 (12) (123)

1 1 1 1
sgn 1 −1 1
π 2 0 1

Example 8.13. Let G = S4. This group has five conjugacy classes, represented by 1, (12),
(123), (1234), (12)(34), with cardinality of 1, 6, 8, 6, and 3, respectively. We already found
representatives for the irreducible complex representations of S4 in Example 6.7. From that
we can read of the character table of S4 as follows:

1 6 8 6 3
1 (12) (123) (1234) (12)(34))

1 1 1 1 1 1
sgn 1 −1 1 −1 1
π 3 1 0 −1 −1

π ⊗ sgn 3 −1 0 1 −1
σ̃ 2 0 −1 0 2
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9 Induced Representations

9.1 Induction on characters

Let G be a finite group and H ≤ G a subgroup. Given f ∈ C[G]#, we can obtain a class
function on H just by restricting f to H. We thus can define the restriction map

ResGH : C[G]# −→ C[H]#, f 7→ f|H .

We would like to define a map in the other direction as well.

Definition/Lemma 9.1. For f ∈ C[H] define f̃ ∈ C[G] by

f̃(g) =

{
f(g) if g ∈ H,

0 else.

Then the map

IndG
H : C[H]# −→ C[G]#, IndG

Hf(g) :=
1

|H|
∑
x∈G

f̃(x−1gx)

is called the induction from H to G. If f = χ is a character of H, then IndG
Hχ is called an

induced character.

Note that a priori IndG
Hχ is not necessarily the character of a representation of G even if

χ was a character of a representation of H. (But we’ll see later that this is in fact the case.)

Proof. We need to check that IndG
H is well-defined, that is, that IndG

Hf is indeed a class
function on G. For that let g, h ∈ G, f ∈ C[H]#. Then

IndG
Hf(h

−1gh) =
1

|H|
∑
x∈G

f̃(x−1h−1ghx) =
1

|H|
∑
y∈G

f̃(y−1gy) = IndG
Hf(g)

where we made the substitution y = hx. Hence IndG
Hf is indeed a class function on G.

Remark 9.2. • IndG
H is a linear map C[H]# −→ C[G]#.

• If x1, . . . , xl ∈ G are representatives for the right cosets G/H, then

IndG
Hf(g) =

∑
x∈G/H

f̃(x−1gx) =
l∑

i=1

f̃(x−1
i gxi).

Theorem 9.3 (Frobenius Reciprocity). Let f ∈ C[H]# and F ∈ C[G]#. Then by unfolding
the definitions we get

⟨IndG
Hf, F ⟩G = ⟨f,ResGHF ⟩H ,

where ⟨·, ·⟩G denotes the inner product on C[G] as introduced at the beginning of §8.2, and
⟨·, ·⟩H is the analogous inner product on C[H].
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Proof. Let f ∈ C[H]# and F ∈ C[G]#. Then

⟨IndG
Hf, F ⟩G =

1

|G|
∑
g∈G

IndG
Hf(g)F (g) =

1

|G|
1

|H|
∑
g∈G

∑
x∈G

f̃(x−1gx)F (g).

Now note that f̃(x−1gx) ̸= 0 if and only if x−1gx ∈ H, that is, if and only if there exists
h ∈ H such that g = xhx−1, and this h determines g uniquely. Hence we can continue our
calculation as follows:

⟨IndG
Hf, F ⟩G =

1

|G|
1

|H|
∑
x∈G

∑
h∈H

f̃(h)F (xhx−1) =
1

|G|
1

|H|
∑
x∈G

∑
h∈H

f(h)F (h)

= 1

|H|
∑
h∈H

f(h)F (h) = ⟨f,ResGHF ⟩H

where we used that F is a class function on G in the second equality.

9.2 Induced representations

G still denotes a finite group and H ≤ G a subgroup. If (π, V ) is a representation of G, we
obtain a representation of H on V by simply restricting π to H. We denote the resulting
representation by ResGHπ : H −→ GL(V ).

Now suppose (σ,W ) is a complex finite dimensional representation of H. Define

C(G,H,W ) := {f : G −→ W | ∀h ∈ H, g ∈ G : f(hg) = σ(h)f(g)}.

Definition 9.4. The map

IndG
Hπ : G −→ GL(C(G,H,W )),

(
IndG

Hπ(g)f
)
(x) := f(xg)

defines a representation of G on C(G,H,W ), called the induced representation.

Example 9.5. Suppose H = {1} is the trivial subgroup of G, and let 1 : H −→ C× denote
the trivial representation of H. Then IndG

H1 is isomorphic to the right regular representation
of G on C[G]. (See exercises)

Remark 9.6. If σ is a representation of H of dimension m, then dim IndG
Hσ = m · |G/H|.

We now obtain a second version of Frobenius reciprocity:

Theorem 9.7 (Frobenius Reciprocity for representations). Let π be a finite dimensional
complex representation of G, and σ a finite-dimensional complex representation of H. Then

⟨χπ, χIndGHσ⟩G = ⟨χResGHπ, χσ⟩H .

An immediate consequence of this is the following:
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Corollary 9.8. Let π and σ be as in Theorem 9.7 and both irreducible. Then π occurs in
IndG

Hσ with the same multiplicity as σ occurs in ResGHπ.

In view of Theorem 9.3 to prove Theorem 9.7, it will suffice to show the following lemma:

Lemma 9.9. Let π and σ be as in Theorem 9.7. Then

(i) ResGHχπ = χResGHπ,

(ii) IndG
Hχσ = χIndGHσ.

Proof. The first assertion is clear. To prove the second, let x1, . . . , xl ∈ G denote represen-
tatives for the cosets G/H, and recall that

IndG
Hχσ(g) =

l∑
i=1

χ̃σ(x
−1
i gxi).

Let W denote the representation space of σ and write WG = C(G,H,W ). Note that
x−1
1 , . . . , x−1

l is then a set of representatives for H\G. Hence the map

WG −→
l⊕

i=1

W =:
l⊕

i=1

W (i), f 7→ (f(x−1
1 ), . . . , f(x−1

l ))

defines an isomorphism of vector spaces.
Let g ∈ G. Then for every i ∈ {1, . . . , l} we can find unique ji ∈ {1, . . . , l} and h ∈ H

such x−1
i g = hx−1

ji
. This means that IndG

Hσ(g) maps W (i) into W (ji). Note that i = ji if and

only if x−1
i gxi ∈ H. In that case the restriction of IndG

Hσ(g) toW
(i) defines an endomorphism

of W (i) which in fact just acts as σ(x−1
i gxi) on W (i) ≃ W . Hence we can compute:

χIndGHσ(g) = tr IndG
Hσ(g) =

∑
i=1,...,l: i=ji

tr
(
IndG

Hσ(g)|W (i)

)
=

∑
i=1,...,l:x−1

i gxi∈H

tr
(
IndG

Hσ(g)|W (i)

)
=

∑
i=1,...,l:x−1

i gxi∈H

trσ(x−1
i gxi) =

∑
i=1,...,l

χ̃σ(x
−1
i gxi) = IndG

Hχσ(g).

Remark 9.10. One can more generally show that

Hom(π, IndG
Hσ) ≃ Hom(ResGHπ, σ)

via a canonical isomorphism (here the left and right hand side denote the vector spaces of
intertwining operators between the respective representations).

36



9.3 Mackey Theory

Induced representations are in general not irreducible as can already be seen from Exam-
ple 9.5, but they can be irreducible in some cases:

Example 9.11. Let H = A3 ≤ S3 = G. Then A3 is a cyclic group of order 3 generated by
the cycle (123). Let ρ : A3 −→ C× be the representation given by ρ((123)) = e2πi/3, and let
π = IndS3

A3
ρ. The elements id and (12) are a set of representatives for the cosets S3/A3 so

that we can compute
χπ(σ) = χ̃ρ(σ) + χ̃ρ((12)σ(12)).

Hence the values of χπ on the three conjugacy classes of S3 are given as follows:

id (12) (123)
χπ 2 0 −1

which coincides with the character of the two-dimensional irreducible representation of S3

that we found in Example 6.6 so that π must be equivalent to this representation and is
therefore irreducible.

Suppose now that H,K are two subgroups. For g ∈ G we write

HgK = {hgk | h ∈ H, k ∈ K}

for the double coset of g in the double quotient

H\G/K = {HgK | g ∈ G}.

Note that there exists S ⊆ G such that G =
⊔

s∈S HsK (disjoint union). Such S exists since
g ∼ h :⇔ h ∈ HgK is an equivalence relation. We fix such S for now.

Theorem 9.12 (Mackey’s Theorem). Let H,K, S be as before. Then for every F ∈ C[K]#

we have
ResGHInd

G
KF =

∑
s∈S

IndH
H∩sKs−1RessKs−1

H∩sKs−1F s

where F s ∈ C[sKs−1]# is given by F s(x) = F (s−1xs).

Proof. For each s ∈ S fix a set of representatives Rs ⊆ H for H/(H ∩ sKs−1). Then

H =
⊔
r∈Rs

r(H ∩ sKs−1). (7)

We now claim that then for every s ∈ S we have

HsK =
⊔
r∈Rs

rsK.
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To prove this claim we first use (7) to get

HsK =
⋃
r∈Rs

r(H ∩ sKs−1)sK ⊆
⋃
r∈Rs

rsK ⊆ HsK

so that we are left to show that rsK ∩ r̃sK = ∅ for r, r̃ ∈ Rs, r ̸= r̃. For that suppose that
rsK ∩ r̃sK ̸= ∅. Then s−1r̃−1rsK ∩K ̸= ∅ so that r̃−1r ∈ s−1Ks∩H. This implies therefore
r = r̃ so that the claim is proven.

We now write Ts = Rss = {rs | r ∈ Rs}. By the claim that we just proved, Ts is
a set of representatives for HsK/K. Write T =

⋃
s∈S Ts =

⊔
s∈S Ts. Then T is a set of

representatives for the cosets G/K.
Now let h ∈ H and F ∈ C[K]#. We can then compute:

IndG
KF (h) =

∑
t∈T

F̃ (t−1ht) =
∑
s∈S

∑
r∈Rs

F̃ (s−1r−1hrs).

If F̃ (s−1r−1hrs) ̸= 0, then by the definition of F̃ we must have r−1hr ∈ sKs−1. Hence we
can continue our computation as follows:

IndG
KF (h) =

∑
s∈S

∑
r∈Rs:

r−1hr∈sKs−1

F s(r−1hr) =
∑
s∈S

∑
r∈Rs:

r−1hr∈sKs−1

IndsKs−1

H∩sKs−1F s(r−1hr)

=
∑
s∈S

∑
r∈Rs

˜IndsKs−1

H∩sKs−1F s(r−1hr) =
∑
s∈S

IndH
H∩sKs−1RessKs−1

H∩sKs−1F s(h)

which finishes the proof of the theorem.

Definition 9.13. Let π and σ be two finite dimensional complex representations of G. We
call π and σ disjoint if no irreducible representation of G occurs as a subrepresentation of
both π and σ.

Lemma 9.14. π and σ are disjoint if and only if ⟨χπ, χσ⟩ = 0.

Proof. Letm1, . . . ,mr, l1, . . . , lr ∈ N0 be such that π ≃ πm1
1 ⊕. . .⊕πmr

r and σ ≃ πl1
1 ⊕. . .⊕πlr

r .
Then ⟨χπ, χσ⟩ =

∑r
i=1mili so that ⟨χπ, χσ⟩ = 0 if and only if mili = 0 for all i which happens

if and only if π and σ are disjoint.

The following is a consequence of Theorem 9.12:

Corollary 9.15 (Mackey’s irreducibility criterion). Suppose H ≤ G is a subgroup, and σ is a
finite dimensional complex representation of H. Then IndG

Hσ is an irreducible representation
of G if and only if both of the following hold:

(i) σ is irreducible

(ii) the representations ResHsHs−1∩Hσ and RessHs−1

sHs−1∩Hσ
s of sHs−1 ∩ H are disjoint for all

s ∈ G, s ̸∈ H. Here σs(x) = σ(s−1xs) for x ∈ sHs−1.
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Proof. Write χ = χσ, and let S be a set of representatives for H\G/H. Without loss of
generality we can assume that 1 ∈ S. Then by Mackey’s Theorem we obtain

ResGHInd
G
Hχ =

∑
s∈S

IndH
H∩sHs−1RessHs−1

H∩sHs−1χs = χ+
∑

s∈S∖{1}

IndH
H∩sHs−1RessHs−1

H∩sHs−1χs

where we used that for s = 1, H ∩ sHs−1 = H. Hence we can compute, using Frobenius
reciprocity in the first and last step:

⟨IndG
Hχ, Ind

G
Hχ⟩ = ⟨χ,ResGHIndG

Hχ⟩ = ⟨χ, χ⟩+
∑

s∈S∖{1}

⟨χ, IndH
H∩sHs−1RessHs−1

H∩sHs−1χs⟩

= ⟨χ, χ⟩+
∑

s∈S∖{1}

⟨ResHH∩sHs−1χ,RessHs−1

H∩sHs−1χs⟩.

For s ∈ S ∖ {1} write as := ⟨ResHH∩sHs−1χ,RessHs−1

H∩sHs−1χs⟩. Note that ⟨χ, χ⟩ ≥ 1, and in fact
⟨χ, χ⟩ = 1 if and only if σ is irreducible. Also note that as ≥ 0 for all s ∈ S ∖ {1}.

Since IndG
Hσ is irreducible if and only if ⟨IndG

Hχ, Ind
G
Hχ⟩ = 1, this discussion therefore

implies that IndG
Hσ is irreducible if and only if σ is irreducible and as = 0 for all s ∈ S∖{1}.

But as = 0 if and only if ResHH∩sHs−1σ and RessHs−1

H∩sHs−1 are disjoint by Lemma 9.14. This
finishes the proof of the corollary.

Remark 9.16. Suppose H is a normal subgroup of G. Then H\G/H = G/H and sHs−1 =
H for all s ∈ G. Mackey’s Theorem simplifies in this case (for K = H) to

ResGHInd
G
HF =

∑
s∈S

F s

for all F ∈ C[H]#, where S is a set of representatives for G/H. In this case Mackey’s
irreducibility criterion therefore also simplies to: IndG

Hσ is irreducible if and only if σ is
irreducible and σ and σs are disjoint for all s ∈ S, s ̸= 1.

Example 9.17. Let G = S3. Then H = A3 is a normal subgroup of G and S = {id, (12)}
is a set of representatives for G/H. Note that A3 is a cyclic subgroup of order 3 gen-
erated by the permutation (123). Define σ : A3 −→ C× by σ((123)) = e2πi/3 =: ζ. Then
σ(12)((123)) = σ((213)) = ζ2 ̸= ζ so that σ and σ(12) are disjoint. The induced representation
IndS3

A3
σ is therefore irreducible (and necessarily equivalent to the irreducible two-dimensional

representation of S3). We of course already proved this by direct computation in Exam-
ple 9.11.

Example 9.18. Let Fp denote the finite field with p elements, p ≥ 3 prime. Let

G = {( a b
0 d ) ∈ GL2(Fp) | a, d ∈ F×

p , b ∈ Fp}

which is a group where the multiplication is given by matrix mutliplication. Let

H = {( 1 b
0 1 ) ∈ GL2(Fp) | b ∈ Fp}
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which is a normal subgroup of G. The set S = {( a 0
0 d ) | a, d ∈ F×

p } is a set of representatives
for G/H. Note that H is an abelian group of order p generated by u0 := ( 1 1

0 1 ), G has order
p(p − 1)2, and S contains (p − 1)2 elements. The irreducible complex representations of H
will therefore be of the form

χζ(u
m
0 ) = ζm

where ζ is a (not necessarily primitive) p-th root of unity. Now if ( a 0
0 d ) ∈ S it can easily be

checked that
χs(um

0 ) = ζmd/a.

Hence χs and χ are disjoint whenever a ̸= d, and χs = χ for all a = d ∈ F×
p . Thus Ind

G
Hχ is

not irreducible.

10 Compact Groups and Peter-Weyl Theorem

In this section G denotes a compact topological group (for example, G might be finite).
This also means that we will assume implicitly from now on that all the finite dimensional
complex representations of G that appear in this section are continuous, which means that
if (π, V ) is a finite dimensional complex representation, then π is continuous if the map
π : G −→ GL(V ) is continuous (recall that GL(V ) is a topological group as explained in
Example 12.2).

Recall that we fixed a Haar measure on G such that G gets measure 1, and we denote
the corresponding integration by

∫
G
f(g) dg for f : G −→ C continuous (see §12.2). Recall

that the Haar measure is in fact left and right invariant by Remark 12.10. We thus obtain
an inner product on the vector space C(G) := {f : G −→ C continuous} defined by

⟨f1, f2⟩ =
∫
G

f1(g)f2(g) dg,

and this turns C(G) into a pre-Hilbert space which we denote by C2(G).

Example 10.1. If G is finite, then C2(G) = C[G] together with the previously defined inner
product from Definition 8.1.

More generally, if X is a compact topological space with a given measure dx which is
normalized such that

∫
X

dx = 1, we denote by C2(X) the pre-Hilbert space consisting of the
set C(X) of all complex valued continuous functions on X together with the inner product

⟨f1, f2⟩ =
∫
X

f1(x)f2(x) dx, f1, f2 ∈ C(X).

Definition 10.2. We denote by Reg : G × G −→ GL(C2(G)) the two-sided regular repre-
sentation on the vector space C2(G) given by

Reg(g, h)f(x) = f(h−1xg).

Note that ⟨·, ·⟩ is invariant under Reg, that is, Reg is unitary with respect to ⟨·, ·⟩.
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Note that we previously defined the two-sided regular representation of G on the space
C[G] of all complex valued functions (see Definition 5.7) so that the representation defined
here is in fact a subrepresentation of that representation if we want to be completely precise.
We will, however, just write Reg for the two-sided regular representation of G on C2(G) from
now on.

Convention: If (π, V ) is a finite dimensional complex representation of G, we fix a
π-invariant inner product on V and a basis B of V which is orthonormal with respect to this
inner product. We then write

πB(g) = (aπij(g))i,j=1,...,nπ

where nπ = dimV .
We denote by R a complete set of representatives for the equivalence classes of finite

dimensional complex representations of G.
We will prove the following theorem only for the case that G is a subgroup of GLn(C)

for some n ∈ N:

Theorem 10.3 (Peter-Weyl). The collection of all the functions aπij, i, j = 1, . . . , nπ, π ∈ R,
constitutes an orthogonal basis for C2(G) with respect to ⟨·, ·⟩. More precisely,

⟨aπij, aπ̃µν⟩ =

{
1/nπ if (i, j, π) = (µ, ν, π̃),

0 else

for all π, π̃ ∈ R, i, j = 1, . . . , nπ, µ, ν = 1, . . . , nπ̃.

Remark 10.4. Note that ’basis’ here is understood in the Hilbert space sense, that is, the
basis generates a dense subspace of C2(G).

Example 10.5. We consider the circle group G = S1 = {z ∈ C | |z| = 1} which is a
compact topological group under multiplication. G is in fact homeomorphic to the compact
topological group R/Z via R/Z ∋ θ 7→ e2πiθ ∈ G and we can use this to write the integration
as ∫

G

f(g) dg =
1

2π

∫ 2π

0

f(eiθ) dθ.

We already know that every irreducible finite dimensional complex representation of G must
be one-dimensional. In fact, R = {χn | n ∈ Z} where

χn : G −→ C×, χn(e
2πiθ) = e2πinθ.

Those χn are clearly pairwise distinct one-dimensional representations of G. They are in
fact also all, since

(
e2πi/m

)m
= 1 so that every one-dimensional representation of G must be

of the form χn for some n ∈ Z.
Thus by Theorem 10.3 the set {χn | n ∈ Z} is an orthonormal basis of C2(G) with respect

to the inner product

⟨f1, f2⟩ =
1

2π

∫ 2π

0

f1(e
iθ)f2(eiθ) dθ.
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This allows us to recover the Fourier expansion for continuous 2π-periodic functions f :
R −→ C: If f is such a function, then there exist unique an ∈ C, n ∈ Z such that

f(θ) =
∑
n∈Z

anχn(e
iθ) =

∑
n∈Z

ane
inθ,

and those coefficients can be computed via

an = ⟨f, χn⟩ =
1

2π

∫ 2π

0

f(θ)e−inθ dθ

(in the inner product we view f as a function on G ≃ R/Z).

Proof of Theorem 10.3. The orthogonality assumption of the theorem can be proven exactly
as in the case that G is finite in Theorem 8.6 so that we don’t repeat the argument here.

We are left to prove completeness. For this we will assume that G is a subgroup GLn(C)
for some n ∈ N. Recall that we write M(π) for the space of matrix coefficients of π ∈ R.

Since G ≤ GLn(C) we can write

g = (aij(g))i,j=1,...,n ∈ GLn(C)

for suitable continuous functions aij : G −→ C. In other words, the aij are the matrix
coefficients of the identity representation G −→ GLn(C), g 7→ g. We write C0(G) for the
vector subspace of C(G) consisting of all functions on G that can be written as polynomials
in aij and aij, i, j = 1, . . . , n. The Stone-Weierstrass Theorem implies that C0(G) is dense in
C2(G) with respect to ⟨·, ·⟩. The proof of Theorem 10.3 is finished once we prove Proposition
10.6 below.

Proposition 10.6. With the notation as in the proof of Theorem 10.3 we have

C0(G) =
⊕
π∈R

M(π).

Proof. For each m ∈ N0 we write C0,m(G) for the vector subspace of C0(G) consisting of
functions on G that can be written as polynomials in aij, aij, i, j = 1, . . . , n, of degree at
most m. For example, if m = 0, then C0,0(G) consists of constant functions only.

Note that C0,m(G) is invariant under Reg so that we can we define the right regular
representation Rm := RC0,m(G) of G on the vector space C0,m(G). Note that C0,m(G) is
finite dimensional in contrast to C0(G) (which is infinite dimensional unless G is finite). By
Theorem 2.11 we can therefore find a finite subset Rm ⊆ R and kπ ∈ N0, π ∈ Rm, such that

Rm ≃
⊕
π∈Rm

πkπ .

Hence
C0,m(G) = M(Rm) =

⊕
π∈Rm

M(π)
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so that
C0(G) ⊆

⊕
m∈N0

M(Rm) ⊆
⊕
π∈R

M(π).

For the other inclusion, suppose there exists π0 ∈ R such that M(π0) ̸⊆ C0(G). Then M(π0)
is orthogonal to C0(G) and hence also to C2(G) which is a contradiction since M(π0) consists
of continuous functions on G.

Corollary 10.7. (i) If π1, π2 are two irreducible finite dimensional complex representa-
tions of G, then

⟨χπ1 , χπ2⟩ =

{
1 if π1 ≃ π2,

0 else.

(ii) If π is a finite dimensional complex representation of G, then π is irreducible if and
only if ⟨χπ, χπ⟩ = 1.

10.1 Invariants

Similarly as in the finite group case in §6.1, we can consider a closed subgroup H ≤ G and
define the subspaces

C2(G)H := {f ∈ C2(G) | ∀h ∈ H, g ∈ G : f(gh) = f(g)}

and C0(G)H = C0(G)∩C2(G)H . Similarly as in the finite group case we can then show that

LH ≃
⊕
π∈R

πmπ

where LH denotes the left regular representation of G on C0(G)H and mπ = dimV H
π with

Vπ the representation space of π.
Moreover, C0(G)H is dense in C2(G)H . This can be seen as follows: Let f ∈ C2(G) and

write f =
∑

π∈R fπ for suitable (and uniquely determined) fπ ∈ M(π). Then R(h)f = f for
all h ∈ H if and only if R(h)fπ = fπ for all π ∈ R and all h ∈ H which in turn holds if and
only if f ∈

⊕
π∈R M(π)H = C0(G)H .

11 Example: Representations of SO(3) and SU(2)

11.1 Representations of SO(3)

Recall that SO(3) consists of all matrices g ∈ GL3(R) which satisfy gtg = 13 and det g = 1.
We want to study representations of SO(3) via its action on the sphere

S2 := {x =

x1

x2

x3

 ∈ R3 | ∥x∥ =
√

x2
1 + x2

2 + x2
3 = 1}.
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SO(3) acts on S2 via
g · x := gx,

and this action leaves the usual Lebesgue measure on S2 invariant. It is easily checked that
this action is transitive, and if we denote by e0 := (0, 0, 1)t the ’south pole’ of the sphere,
then the stabilizer of e0 under the action of SO(3) equals

H = {

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 | 0 ≤ θ < 2π} ≃ SO(2).

We therefore obtain a homeomorphism of topological spaces

SO(3)/H −→ S2, gH 7→ ge0,

and a representation L of SO(3) on C2(S
2) ≃ C2(SO(3))SO(2) given by

L(g)f(x) = f(g−1x) (8)

for f ∈ C2(S
2), x ∈ S2.

Remark 11.1. One can show (see exercises) that if V ⊆ C2(S
2) is finite dimensional sub-

space which is L-invariant, then there exists f ∈ V such that f(hx) = f(x) for all h ∈ H,
x ∈ S2.

Recall the Laplace operator ∆ on R3, that is, ∆ is the differential operator given by

∆ = ∂2
1 + ∂2

2 + ∂2
3

where ∂j = d/(dxj). For x ∈ R3 we write r(x) := ∥x∥. Further define P := C[x1, x2, x3] to be
the complex vector space consisting of all polynomials in the variables x1, x2, x3 with complex
coefficients. Let Pn ⊆ P denote the subspace consisting of homogeneous polynomials of
degree n so that

P =
⊕
n∈N0

Pn.

We further define an inner product on P by

⟨p, q⟩ := (p(∂1, ∂2, ∂3)q) (0).

It will follow from Lemma 11.3(i) below that this is indeed an inner product on P .

Example 11.2. The definition of the inner product can look a bit strange, so we compute
some examples:

• ⟨1, 1⟩ = 1, ⟨1, x1⟩ = 0 = ⟨x1, 1⟩.

• ⟨x1, x1x2x3 + x2
1⟩ = ∂1(x1x2x3 + x2

1)|x=0 = 0
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• ⟨x2
1, x1x2x3 + x2

1⟩ = ∂2
1(x1x2x3 + x2

1)|x=0 = 2

Lemma 11.3. (i) The set {xκ1
1 xκ2

2 xκ3
3 | κ1, κ2, κ3 ∈ N0} is an orthogonal basis of P with

respect to ⟨·, ·⟩. Moreover, ⟨xκ1
1 xκ2

2 xκ3
3 , xκ1

1 xκ2
2 xκ3

3 ⟩ = κ1!κ2!κ3!

(ii) ∆ and r2 (i.e. multiplication by r(x)2) are adjoint operators with respect to ⟨·, ·⟩.

Proof. (i) Note that ∂k
i (x

m
j )|x=0 ̸= 0 if and only if i = j and l = m so that the orthogonality

follows. The inner product of xκ1
1 xκ2

2 xκ3
3 with itself can be easily computed explicitly.

(ii) It will suffice to show that ∂j and multiplication by xj are adjoint. Without loss of
generality j = 1. Then

⟨∂1(xλ1
1 xλ2

2 xλ3
3 ), xκ1

1 xκ2
2 xκ3

3 ⟩ = λ1⟨xλ1−1
1 xλ2

2 xλ3
3 , xκ1

1 xκ2
2 xκ3

3 ⟩

=

{
λ1!λ2!λ3! if λ1 − 1 = κ1, λ2 = κ2, λ3 = κ3,

0 else.

On the other hand,

⟨xλ1
1 xλ2

2 xλ3
3 , x1 · xκ1

1 xκ2
2 xκ3

3 ⟩⟨xλ1
1 xλ2

2 xλ3
3 , xκ1+1

1 xκ2
2 xκ3

3 ⟩

=

{
λ1!λ2!λ3! if λ1 = κ1 + 1, λ2 = κ2, λ3 = κ3,

0 else

so that ∂1 and multiplication by x1 are indeed adjoint operators with respect to ⟨·, ·⟩.

We define a representation π of SO(3) on P by

(π(g)p)(x) = p(g−1x).

Note that for each n ∈ N0, the subspace Pn is invariant under π and we denote the corre-
sponding subrepresentation by (πn,Pn) so that

π ≃
⊕
n∈N0

πn.

Note that ⟨·, ·⟩ is π-invariant. We further define the space of harmonic polynomials (i.e. the
kernel of ∆ in P)

W = {p ∈ P | ∆p = 0}
and write Wn = W ∩ Pn.

Corollary 11.4. For each n ∈ N0 we have

Pn = Wn ⊕ r2Wn−2 ⊕ r4Wn−4 ⊕ . . .⊕ r2⌊
n
2
⌋Wn−2⌊n

2
⌋

where ⌊n
2
⌋ denotes the largest integer ≤ n/2. Moreover, each summand on the right hand

side is πn-invariant.
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Proof. Note that Wn = ker∆|Pn so that by Lemma 11.3(ii) we get Pn = Wn ⊕ r2Pn−2 (with
P−2 := 0 =: P−1). Hence the asserted decomposition follows by induction on n. Regarding
the invariance of the summands it suffices to note that the function r : R3 −→ R is invariant
under the action of SO(3) and that ∆p(g−1·) = 0 if and only if ∆p = 0 for all g ∈ SO(3).

Let Φ : P −→ C2(S
2) denote the linear map Φ(p) = p|S2 , and let C0(S

2) denote the
image of Φ in C2(S

2). By Stone-Weierstrass C0(S
2) is dense in C2(S

2).

Lemma 11.5. Φ intertwines π with L (L as defined in (8)). Moreover, if we restrict Φ to Pn,
then Φ|Pn intertwines πn with the subrepresentation LΦ(Pn) of L, and Φ|Pn : Pn −→ Φ(Pn) is
in fact an isomorphism.

Proof. All assertions are immediate from the definitions with the exception of the injectivity
of Φ|Pn : Pn −→ Φ(Pn). To prove injectivity let p ∈ Pn such that p|S2 ≡ 0. Let x ∈ R3,
x ̸= 0, and write x̃ := ∥x∥−1x ∈ S2. Then p(x) = ∥x∥np(x̃) = 0, hence p ≡ 0 proving
injectivity.

Theorem 11.6. We have
C0(S

2) =
⊕
n∈N0

Φ(Wn)

and each Φ(Wn) is a minimal SO(3)-invariant subspace of dimension 2n+ 1.
Moreover, we can find an orthonormal basis Yn,−n, Yn,−n+1, . . . , Yn,0, . . . , Yn,n of Φ(Wn)

such that each Yn,j is an eigenfunction for the action of SO(2), that is,

L(kθ)Yn,j = eijθYn,j

for all

kθ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ∈ H ≃ SO(2).

Proof. Corollary 11.4 implies that

C0(S
2) =

∑
n∈N0

Φ(Pn) =
∑
n∈N0

⌊n/2⌋∑
k=0

Φ(Hn−2k) =
∑
k∈N0

Φ(Hk).

We now claim that

Φ(Pn) = Φ(Wn)⊕ Φ(Wn−2)⊕ . . .⊕ Φ(Wn−2⌊n/2⌋) (9)

is a decomposition of Φ(Pn) into minimal SO(3)-invariant subspaces, and that dimΦ(Wn−2k)
SO(2) =

1 for all k.
To prove this claim we write V = Φ(Pn). Let V = V1⊕ . . .⊕Vm be a decomposition of V

into minimal invariant subspaces. By Remark 11.1 we have V
SO(2)
j ̸= 0 for all j = 1, . . . ,m.

Hence ⌊n/2⌋+1 ≤ m ≤ dimV SO(2). It will therefore suffice to show that in fact dimV SO(2) =
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⌊n/2⌋ + 1. To see this we make a change of variables: Write u = x1 − ix2 ∈ P1 so that
u = x1 + ix2 ∈ P1. The collection of monomials {uµuνxκ

3 | µ, ν, κ ∈ N0, µ + ν + κ = n} is
then a basis for Pn. Moreover, we can compute

L(kθ)u =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 1
−i
0

 =

 cos θ − i sin θ
− sin θ − i cos θ

0

 = e−iθu

(where we write u in the basis x1, x2, x3 for the matrix calculations), and therefore L(kθ)u =
eiθu. Hence L(kθ)u

µuνxκ
3 = e(ν−µ)iθuµuνxκ

3 so that

L(kθ)u
µuνxκ

3 = uµuνxκ
3 ∀kθ ∈ SO(2) ⇔ µ = ν. (10)

Hence
dimV = dimPSO(2)

n = #{ν ∈ N0 | 2ν ≤ n} = ⌊n/2⌋

so that the decomposition in (9) must be indeed a decomposition into minimal invariant
subspaces, and the space of SO(2)-invariants in each such subspace has dimension 1.

So, by the claim we can find Ym,0 ∈ Wm (normalized to have length 1) such that
Φ(Wm)

SO(2) = CYm,0. Furthermore, viewing Φ(Wm) as an SO(2)-representation we obtain a
decomposition of Φ(Wm) into one-dimensional subspaces, each invariant under SO(2). In fact
we now that each irreducible complex representation of SO(2) is of the form χl : SO(2) −→
C×, χl(kθ) = eilθ for some l ∈ Z. Hence to understand the decomposition of Φ(Wm) into
SO(2)-minimal subspaces it will suffice to compute the multiplicity with which each χl ap-
pears in Φ(Wm). We first compute its multiplicity in Pn using an argument analogous to
(10):

L(kθ)u
µuνxκ

3 = eilθuµuνxκ
3 ∀kθ ∈ SO(2) ⇔ µ− ν = l

so that the multiplicity of χl in Pn equals

#{(µ, ν) ∈ N0 × N0 | ν − µ = l and µ+ ν ≤ n} = #{µ ∈ N0 | µ ≤ (n− l)/2}

=

{
⌊n−l

2
⌋+ 1 if l ≤ n,

0 else.

Hence the multiplicity of χl in Φ(Wm) equals

⌊m− l

2
⌋+ 1− (⌊m− 2− l

2
⌋+ 1) = 1

for l = −m,−m + 1, . . . ,m − 1,m (where we set ⌊m−2−l
2

⌋ + 1 = 0 if m − 2 − l < 0), and
we can accordingly choose normalized eigenfunctions Ym,l ∈ Φ(Wm). Their orthogonality
follows from the fact that Φ(Wm) and Φ(Wn) are orthogonal for m ̸= n, and that χl ̸=≃ χk

for l ̸= k.
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Corollary 11.7 (Fourier analysis on the sphere). For every f ∈ C(S2) there exist unique
an,j ∈ C, j = −n, . . . , n, n ∈ Z such that

f =
∑
n∈Z

n∑
j=−n

an,jYn,j.

Moreover, the coefficients equal an,j =
∫
S2 f(x)Yn,j(x) dx.

Remark 11.8. The functions Yn,j are called spherical harmonics. They are in fact eigen-
functions for the spherical Laplace operator ∆S2, more precisely,

∆S2Yn,j = −n(n+ 1)Yn,j.

In particular, the eigenvalues of ∆S2 in C2(S
2) are exactly −n(n+1), n ∈ N0, each occurring

with multiplicity 2n+ 1.
This spherical Laplacian ∆S2 can be obtained from ∆ by a change of variables: Write

x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ.

Then for a smooth function f : R3 −→ C we have

∆f =
1

r2 sin θ

∂

∂r

(
r2 sin θ

∂f

∂r

)
+

1

r2
∆S2f

so that we obtain in those new variables

∆S2 =
1

sin θ

(
∂

∂θ
(sin θ

∂

∂θ
) +

1

sin θ

∂2

∂φ2

)
.

Remark 11.9. One can compute the spherical harmonics Yn,j in terms of Legendre poly-
nomials: For n ∈ N0 define

Pn(x) :=
1

2nn!

dn

dxn

[
(x2 − 1)n

]
and

P j
n(x) := (1− x2)j/2

dj

dxj
Pn(x).

Then
Yn,j(θ, φ) = eijφP j

n(cos θ)

(with θ, φ the variables parametrizing S2 as introduced in the previous remark).
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11.2 Representations of SU(2)

We now consider the group

SU(2) = {g ∈ GL2(C) | ggt = 12, det g = 1} = {
(

a b

−b a

)
| a, b ∈ C, |a|2 + |b|2 = 1},

which is a compact topological group. For n ∈ N0 we define Vn to be the complex vector
space consisting of homogeneous polynomials in x and y of degree n so that dimVn = n+1.
We define a representation (Φn, Vn) of SU(2) by

Φn(g)p(x, y) = p((x, y)g) = p(ax+ cy, bx+ dy)

for ( a b
c d ) ∈ SU(2).

Theorem 11.10. Φn is an irreducible representation of SU(2).

Proof. Write T = {diag(z, z−1) | z ∈ C×, |z| = 1} ⊆ SU(2). Then for g = diag(z, z−1) ∈ T
and p(x, y) = xkyn−k we get

Φn(g)p(x, y) = z2k−np(x, y)

so that we obtain the decomposition

Vn =
n⊕

k=0

Cxkyn−k (11)

into one-dimensional vector spaces which are each invariant under the representation Res
SU(2)
T Φn

of T .
Now suppose U ⊆ Vn is a Φn-invariant subspace, U ̸= 0. Then U is also Res

SU(2)
T Φn-

invariant so that because of (11) we have

U =
r⊕

i=1

Cxkiyn−ki (12)

for suitable x1, . . . , xr ∈ {0, . . . , n}. Then r ≥ 1 since U ̸= 0. Let k ∈ {k1, . . . , kr}. Then for
g =

(
a b
−b a

)
∈ SU(2) we get

Φn(g)x
kyn−k = (ax− by)k(bx+ ay)n−k =

n∑
j=0

αjx
jyn−j

where αn = akbn−k. Hence when we choose a, b ̸= 0, then αn ̸= 0 and therefore xn ∈ U
because of (12). But then

Φn(g)x
n = (ax− by)n =

n∑
j=0

βjx
jyn−j

where βj = ± ( n
j ) ajb

n−j ̸= 0 when a, b ̸= 0. Hence, again by (12), xjyn−j ∈ U for every
j = 0, . . . , n so that U = Vn.

Remark 11.11. One can show (see exercises) that up to equivalence the Φn, n ∈ N0 are all
irreducible finite dimensional complex representations of SU(2).
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11.3 Relation between representations of SO(3) and SU(2)

Our first goal in this section is to construct a continuous homomorphism of topological groups

Ψ : SU(2) −→ SO(3)

such that kerΨ = {±1}.
As a first step we consider the four dimensional R-vector space

H = {
(

z w
−z w

)
∈ M2(C)}.

We list some properties:

1) H is a four dimensional division algebra over R (with respect to the usual matrix
addition and multiplication): It is easy to see that H is closed under addition and
multiplication, and moreover, if A = ( z w

−z w ) ∈ H, A ̸= 0, then

A−1 =
1

|z|2 + |w|2

(
z −w
w z

)
∈ H.

2) The map

φ : H −→ R4,

(
z w
−z w

)
7→ (x, y, s, t)

where z = x+ iy, w = s+ it is an isomorphism of R-vector spaces.

3) The map H×H 7→ R, (A,B) 7→ [A,B] := (det(AB))1/2 defines an inner product on H
such that [A,A] = ∥φ(A)∥2 (where ∥ · ∥ denotes the usual Euclidean norm on R4).

4) We have SU(2) = {A ∈ H | [A,A] = 1}. In particular, SU(2) ≃ S3 (the unit sphere
in R4) via the isomorphism φ so that SU(2) is connected as a topological space. This
isomorphism can also be used to define a measure on SU(2) by taking the (normalized)
Lebesgue measure on S3. It is easily seen that this measure is invariant under the
action of SU(2), that is, it is the (normalized) left-invariant Haar measure on SU(2).

5) The representation SU(2) −→ GL(H), g 7→ (X 7→ gX) is orthogonal with respect to
[·, ·].

Now consider the three-dimensional R-vector space

E = {
(

x s+ it
s− it −x

)
| x, s, t ∈ R} = {iX | X ∈ H, trX = 0},

and define
Ψ̃ : SU(2) −→ GL(E) ≃ GL3(R), Ψ̃(g)A = gAg−1,

where the isomorphism with GL3(R) is given by E ∋
(

x s+it
s−it −x

)
7→ (x, s, t) ∈ R3.
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Remark 11.12. • iE ⊆ H is the orthogonal complement of the line R12 ∈ H with respect
to [·, ·].

• E is a three-dimensional Euclidean vector space with inner product

⟨A,B⟩ = (− det(AB))1/2.

Note that ⟨A,B⟩ = [iA, iB].

Lemma 11.13. Im Ψ̃ ⊆ SO(3). We write Ψ : SU(2) −→ SO(3), Ψ(g) = Ψ̃(g).

Proof. By above remarks Ψ̃(g) is an orthogonal matrix for all g ∈ SU(2). Moreover, since
Ψ̃(12) = 13 ∈ SO(3) and SU(2) is connected, we must have that Im Ψ̃ ⊆ SO(3).

Proposition 11.14. Ψ : SU(2) −→ SO(3) is a continuous surjective group homomorphism
with kerΨ = {±12}.

Proof. We only need to prove surjectivity and the assertion about the kernel. We start with
the kernel. Let g ∈ SU(2). Then Ψ(g) = 13 if and only if gAg−1 = A for all A ∈ E. This is
the case if and only if

g

(
1 0
0 −1

)
g−1 =

(
1 0
0 −1

)
, and g

(
0 z
z 0

)
g−1 =

(
0 z
z 0

)
∀z ∈ C.

The first property is satisfied if and only if g is a diagonal matrix, that is g = diag(w,w) for
some w ∈ C1. The second property then becomes(

0 w2z

w2z 0

)
=

(
0 z
z 0

)
∀z ∈ C

which is satisfied if and only if z = ±1, that is, g = ±12.
The surjectivity requires some preparation:

Claim 1:

For every A ∈ E we can find g ∈ SU(2) such that gAg−1 ∈ R≥0 (
1 0
0 −1 ).

To see this let A ∈ E. By the Spectral Theorem for Hermitian matrices, we now that the
eigenvalues α, β of A are real and that there exists a unitary matrix B such that BAB−1 =
diag(α, β). Since trA = 0 we must have α = −β, and we can assume α > 0. If detB = 1 we
are done, if detB = −1, we multiply B by diag(1,−1) to obtain a matrix in SU(2). Claim 1

Claim 2:

Suppose H ≤ SO(3) is a subgroup such that H acts transitively on S2 (the unit sphere in
R3), and such that there exists a line in R3 such that H contains all rotations around this
line. Then H = SO(3).

51



To see this let Rv ⊆ R3 be the line that H stabilizes. We can assume that v ∈ S2. Let
g ∈ SO(3) so that gv ∈ S2. By the transitivity of the action, there exists h ∈ H such that
gv = hv, that is, h−1gv = v. This means that h−1g is a rotation around the line Rv so that
by assumption we have h−1g ∈ H, and therefore g ∈ H. Claim 2

We now let H = ImΨ ≤ SO(3). Note that S2 ≃ {A ∈ E | detA = −1} so that by
Claim 1 H acts transitively on S2. By Claim 2 the proof of the proposition will therefore be
finished once we show the following:

Claim 3:

H contains all rotations around the line R ( 1 0
0 −1 ) ⊆ E ≃ R3.

To see this we compute for t ∈ R, z ∈ C,

Ψ(

(
eit 0
0 e−it

)
)

(
1 z
z 1

)
=

(
1 e2itz

e2itz 1

)
,

that is, H contains all rotations around the line R ( 1 0
0 −1 ) as asserted. Claim 3

Using the proposition we therefore obtain group homomorphisms

SU(2) −→ {±12}\SU(2) −→ SO(3)

where the first map is just the projection p : SU(2) −→ {±12}\SU(2), and the second map,
which is an isomorphism of topological groups, is obtained from Ψ. We thus get a bijection

{irred finite dim’l complex rep’ns of SU(2) with kernel ⊇ {±12}}
−→ {irred finite dim’l complex rep’ns of SO(3)}

given by π 7→ π ◦ p. (Recall that for us representations of topological groups are always
continuous.)

Recall the representations (Φn, Vn) of SU(2), n ∈ N0, from §11.2 By the exercises we
know that {Φn | n ∈ N0} is a complete set of representatives of irreducible finite dimensional
complex representations of SU(2).

Lemma 11.15. kerΦn ≥ {±12} if and only if n is even.

Proof. We have Φn(−12)x
kyn−k = (−1)nxkyn−k so that Φn(−12) acts trivially on Vn if and

only if n is even.

Remark 11.16. One can in fact show that

kerΦn =

{
{12} n odd,

{±12} n even.

Recall the irreducible representations (πΦ(Wn),Φ(Wn)) of SO(3) on the 2n+1-dimensional
vector space Φ(Wn) from Theorem 11.6.

Corollary 11.17. For all n ∈ N0 we have Φ2n◦p = πΦ(Wn). In particular, the representations
(πΦ(Wn),Φ(Wn)), n ∈ N0, give a complete list of representatives for the equivalence classes
of irreducible finite dimensional complex representations of SO(3).
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12 Appendix

12.1 Topological Groups

Definition 12.1. A topological group is a group G whose underlying set is equipped with a
topology such that the two maps

G×G −→ G, (g, h) 7→ gh,

and
G −→ G, g 7→ g−1

are continuous with respect to this topology. (Here we equip G × G with the product
topology.)

Example 12.2. • We can obtain a topological group from any given group by equipping
it with the trivial or discrete topology.

• The groups (R,+), (R×, ·), (C,+), and (C×, ·) are topological groups when equipped
with the usual (Euclidean) topology.

• GLn(R) and GLn(C) are topological groups when we equip them with the subspace
topologies coming from Mn(R) and Mn(C), respectively. Here we canonically identify
Mn(R) with Rn2

andMn(C) with Cn2
via the matrix entries and use the usual Euclidean

topology on Rn2
and Cn2

. To see that the multiplication is indeed a continuous map,
note that if A = (aij)i,j=1,...,n, B = (bij)i,j=1,...,n ∈ GLn(R) (the same argument works
over C), then the matrix entries of the product AB will be polynomials in the aij and
bkl, and therefore continuous maps. To see that A 7→ A−1 is continuous, we can use
Cramer’s rule to write

A−1 =
1

detA
(pij(akl, k, l = 1, . . . , n))i,j=1,...,n

for suitable polynomials pij. Those polynomials are again continuous functions in the
matrix entries of A, and moreover, detA is also continuous in the matrix entries, and in
fact non-zero in some small neighborhood of A. Hence A 7→ A−1 is indeed continuous.

• If V is a finite dimensional vector space over K = R or K = C, and we fix a basis of V ,
we obtain a group isomorphism GL(V ) −→ GLn(K). We use this to equip GL(V ) with
a topology, and it is easily seen using the previous example that this turns GL(V ) into
a topological group. Note that if we choose a different basis, the resulting topology will
be the same, so that we can consider GL(V ) as a topological group with a canonical,
well-defined topology.

Definition 12.3. The last example allows us to define the notion of a continuous represen-
tation: A representation (π, V ) of a topological group G on a real or complex vector space
is called continuous if the map π : G −→ GL(V ) is a continuous map of topological spaces.
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Remark 12.4. If G is a topological group and H ⊆ G a subgroup, then H is also a topological
group when we equip it with the subspace topology coming from G.

Example 12.5. The subgroups SLn(R), SO(n), O(n) of GLn(R) are topological groups with
the subspace topology coming from GLn(R). Similarly, the subgroups SLn(C), SU(n), and
U(n) of GLn(C) are topological groups as well.

Example 12.6. The groups O(n), SO(n), SU(n), and U(n) are in fact compact topological
groups.

12.2 Haar measure

Definition 12.7. A left (resp. right) Haar measure on a topological group G is a Radon
measure µ on G such that for all g ∈ G and all Borel sets U ⊆ G we have µ(gU) = µ(U)
(resp. µ(Ug) = µ(U)).

Recall that the Borel σ-algebra of a topological space is the σ-algebra generated by all
the open sets, and an element of this σ-algebra is called a Borel set.

Remark 12.8. If µ is a left Haar measure, then µ̃(U) := µ(U−1) is a right Haar measure,
and vice versa. Here for a Borel set U ⊆ G, U−1 = {g−1 | g ∈ G} which is again a Borel set
since g 7→ g−1 is continuous.

Theorem 12.9. Suppose G is a locally compact topological group. Then there exists a left
(resp. right) Haar measure on µ on G. Moreover, µ is unique up to scalara multiplication,
that is, if µ̃ is another left (resp. right) Haar measure, there exists λ ∈ R>0 such that µ̃ = λµ.

See [Foll, Ch. 2.2] for a proof.
We will use this result only for G compact, and we again assume compactness from now

on. In this case we can normalize the Haar measure to be a probability measure, that is,
such that G has measure 1. The left (resp. right) Haar measure µ defines an integration on
G which we will denote by ∫

G

f(g) dg :=

∫
G

f(g) dµ(g)

for f ∈ C(G). It satisfies the following properties:

• C(G) ∋ f 7→
∫
G
f(g) dg ∈ C is a linear map in f .

• If f ≥ 0, f ̸= 0, then ∫
G

f(g) dg > 0 (13)

• For every f ∈ C(G), x ∈ G we have
∫
G
f(xg) dg =

∫
G
f(g) dg (resp.

∫
G
f(gx) dg =∫

G
f(g) dg).
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The first and last property are obvious. For the second one, let f ≥ 0, f ̸= 0, be continuous.
Then there exists ϵ > 0 and open set U ⊆ G such that f ≥ ϵ on U . Once we show that U
has positive measure, we are done. For this suppose that µ(U) = 0. Then also µ(gU) = 0
for every g ∈ G. The collection {gU | g ∈ G} is an open covering of G, so since G is
compact, there exist finitely many g1, . . . , gl ∈ G such that G = g1U ∪ . . . ∪ glU . But then
µ(U) ≤ µ(g1U) + . . .+ µ(glU) = 0 in contradiction to µ(G) = 1.

Remark 12.10. One can in fact show that every compact topological group is unimodular,
that is, every left invariant Haar measure is also right invariant and vice versa (see [Foll,
Corollary (2.28)]). Hence the integral defined by the Haar measure is in that case both left
and right invariant.

Example 12.11. Suppose G is a finite group. Then G is a compact topological group when
equipped with the discrete topology. Define for U ⊆ G,

µ(U) =
|U |
|G|

.

This is a left and right probability Haar measure on G, and integration becomes∫
G

f(g) dg =
1

|G|
∑
g∈G

f(g).

Example 12.12. The topological group U(1) = {A ∈ GL1(C) | AĀt = 11} = {z ∈ C× |
zz̄ = 1} is just the circle group, and we have an isomorphism of topological groups given by
R/Z −→ U(1), θ 7→ e2πiθ. Define for f ∈ C(U(1))∫

U(1)

f(g) dg :=

∫ 1

0

f(e2πiθ) dθ.

It can easily be seen that this indeed defines a left and right probability Haar measure on
U(1).
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