Connections between the topological limit and categorical limit

The definitions of a filter and its related concepts are from Tai-Danae Bradley, Tyler Bryson, and John Terilla, *Topology: A Categorical Approach*.

Definition. (filter) A **filter** on a set X is a collection ${\mathcal F}$ that is

- (i) downward directed: $A,B\in\mathcal{F}$ implies there exists $C\in\mathcal{F}$ such that $C\subseteq A\cap B$,
- (ii) nonempty: $\mathcal{F}
 eq \varnothing$,
- (iii) upward closed: $A \in \mathcal{F}$ and $A \subseteq B$ implies $B \in \mathcal{F}$.

An additional property is often useful:

(iv) proper: there exists $A\subseteq X$ such that $A
ot\in\mathcal{F}$.

Remarks

- Being downward directed and upward closed implies that filters are closed under finite intersections, and being proper is equivalent to the requirement that $\varnothing \notin \mathcal{F}$.
- $\mathbf{2}^{X}$ is itself a filter but not proper.
- A set that is only downward directed and nonempty is called a **filterbase**. Any filterbase generates a filter simply by taking the upward closure of the base.

Examples.

- (trivial filter) For any set X there is the smallest filter $\{X\}$ called the trivial filter.
- (eventuality filter) Given a sequence $\{x_n\}$ in a space X, the set

$$\mathcal{E}_{x_n} = \{A \subseteq X \mid ext{ there exists an } N ext{ so that } x_n \in A ext{ for all } n \geq N \}$$

is a proper filter.

- (non-example, open neighborhoods of a point x) Given a topological space X and a point $x \in X$, the collection of open neighborhoods of x denoted by \mathcal{T}_x , is generally not a filter, but a filterbase.

Definition. (convergence) A filter \mathcal{F} on a topological space (X,\mathcal{T}) converges to x if and only if \mathcal{F} refines \mathcal{T}_x , that is, if $\mathcal{T}_x \subseteq \mathcal{F}$. When \mathcal{F} converges to x we will write $\mathcal{F} \to x$.

As an easy observation, a sequence $\{x_n\}$ converges to a point x if and only if $\mathcal{E}_{x_n} o x$.

With the concept of filters, we now give an equivalence statement between the categorical limit and the topological limit.

Let X be a topological space and \mathcal{F}_X be the collection of all filters on X. Given $x \in X$ and $F \in \mathcal{F}_X$, let $\mathcal{U}_X(x)$ be the neighborhood filter of x, which is the filter generated by \mathcal{T}_x , and let

$$\mathcal{F}_{x.F} = \{G \in \mathcal{F}_X \mid F \cup \mathcal{U}_X(x) \subseteq G\}$$

be the collection of all the filters containing both F and the neighborhood filter of x.

We observed that $F\subseteq F\cup \mathcal{U}_X(x)\subseteq \bigcap_{G\in \mathcal{F}_{x,F}}G$, and the latter two sets are filters. Also since $\bigcap_{G\in \mathcal{F}_{x,F}}G$ is the smallest filter containing $F\cup \mathcal{U}_X(x)$ and $F\cup \mathcal{U}_X(x)$ is itself a filter, we have $\bigcap_{G\in \mathcal{F}_{x,F}}G\subseteq F\cup \mathcal{U}_X(x)$ so that $F\cup \mathcal{U}_X(x)=\bigcap_{G\in \mathcal{F}_{x,F}}G$.

View the inclusion of sets " \subseteq " as a partial order on \mathcal{F}_X and $\mathcal{F}_{x,F}$. Then \mathcal{F}_X becomes a small category and $\mathcal{F}_{x,F}$ is its subcategory. Let $E:\mathcal{F}_{x,F}\longrightarrow \mathcal{F}_X$ be the embedding functor. Now we have a theorem indicating the connection between the categorical limit and the topological limit.

Theorem. x is a topological limit of the filter F if and only if F is a categorical limit of the functor E.

Proof.

$$x$$
 is a topological limit of the filter F , (i.e., $F \to x$) $\Leftrightarrow (\mathcal{T}_x \subseteq) \mathcal{U}_X(x) \subseteq F \Leftrightarrow F \cup \mathcal{U}(x) \subseteq F$ $\Leftrightarrow F = \bigcap_{G \in \mathcal{F}_{x,F}} G$ (the universal object) $\Leftrightarrow \left(F \xrightarrow{p_G} E(G)\right)_{G \in \mathcal{F}_{x,F}}$ is a limit cone of E (i.e., F is a categorical limit of E)