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Connections between the topological limit and 
categorical limit
The definitions of a filter and its related concepts are from Tai-Danae Bradley, Tyler Bryson, and John Terilla, Topology: A 
Categorical Approach.

Definition. (filter) A filter on a set  is a collection  that is 
(i) downward directed:  implies there exists  such that , 
(ii) nonempty: , 
(iii) upward closed:  and  implies . 
An additional property is often useful: 
(iv) proper: there exists  such that .

Remarks: 
- Being downward directed and upward closed implies that filters are closed under finite intersections, and being proper is equivalent 
to the requirement that . 
-  is itself a filter but not proper.

- A set that is only downward directed and nonempty is called a filterbase. Any filterbase generates a filter simply by taking the 
upward closure of the base.

Examples. 

- (trivial filter) For any set  there is the smallest filter  called the trivial filter. 
- (eventuality filter) Given a sequence  in a space , the set

 is a proper filter. 
- (non-example, open neighborhoods of a point ) Given a topological space  and a point , the collection of open 
neighborhoods of  denoted by , is generally not a filter, but a filterbase.

Definition. (convergence) A filter  on a topological space  converges to  if and only if  
refines , that is, if . When  converges to  we will write .

As an easy observation, a sequence  converges to a point  if and only if . 

With the concept of filters, we now give an equivalence statement between the categorical limit and the topological limit.

Let  be a topological space and  be the collection of all filters on .  
Given  and , let  be the neighborhood filter of , which is the filter generated by , and let 

be the collection of all the filters containing both  and the neighborhood filter of . 

We observed that , and the latter two sets are filters. Also since  is the smallest filter 

containing  and  is itself a filter, we have  so that 
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 View the inclusion of sets " " as a partial order on  and . Then  becomes a small category and  is its 
subcategory. Let  be the embedding functor. Now we have a theorem indicating the connection between the 
categorical limit and the topological limit.

Theorem.  is a topological limit of the filter  if and only if  is a categorical limit of the functor .

Proof. 
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x is a topological limit of the filter F , (i.e., F → x )
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(i.e., F  is a categorical limit of E)


