Lecture 1, GOADyn

September 7, 2021
Let A be a (unital) C*-algebra. We define

Asa={a€Ala=a"}.

Note that A = Ag, + 1 Aga, since for all a € A we have

a= ata +1 a—‘a , GR,ar € Ag,.
2 21

ar ar
We define
Ay, ={a€A:a=a" o(a) C[0,+0)}
={a€A:a="b"bfor somebe A}
={a€ A:a=0for some b€ A}
Further, for all a € Aga, a = a4 — a_, where a4,a_ € Ay with aya_ = 0. Hence every element in A is a

linear combination of 4 positive elements.

Exercises: (Facts about Ay and As,)
(1) For all a € Ag,, —14llal] < a < al|la.
(2) A, is a cone, i.e.,
e g€ Ay and A > 0 implies Aa € Ay,
e a,bc A, impliesa+be A,.
(3) 0 <a<be Aimplies 0 < c*ac < ¢*be, for all ¢ € A.
(4) 0 <a <be Aimplies |all <[]
(5) For a € Ag,, |la]] < 1if and only if =14 <a < 14.

Let A, B be C*-algebras. Then M,,(A), M,,(B) are C*-algebras for all n > 1. Indeed, if A C B(H), then

My (A) C BH® @ H).

Let ¢: A — B be a linear map. For n > 1, consider ¢,,: M, (A) — M, (B) given by

en(laiz]) = [p(ai)], lai;] € Mp(A).

Sometimes we use the notation ¢, = ¢ @ Id, (¢)-

Definition 1.1. The map ¢ is called:
e positive if p(A}) C By.
o n-positive if p,, is positive.

e completely positive (c.p.) if ¢, is positive for all n > 1.

Remark 1.2. In order to talk about positivity, we do not really need C*-algebras. Given a C*-algebra
A, consider a closed linear subspace E C A such that {e* : e€ E} = E* = F and 14 € E. E is called an
operator (sub)system.



Note that some books, e.g., Paulsen: “Completely bounded maps and Operator Algebras”, do not require

E to be closed. Here we follow the convention from Brown-Ozawa [BO].

Examples of operator systems.

e Unital C*-algebras are operator systems.

. { l)\f 33]1 Tz, € B(H)} C M3(B(H)) is an operator (sub)system.
vt op

. { lz g] o, B € C} C M(C) is not an operator system.

If E C A is an operator subsystem, then we define
Eo={a€FE|a"=a} CAa=A+ — A4
E,=FE,NA;
M (E)4 = (Mn(E))sa N My (A) 4
(so M, (E) inherits the order structure from M, (A)). One can then consider ¢: E — B (E C A) and

define positive, n-positive and c.p. as above.

Note that there are positive maps which are not c.p. Let ¢: Mz(C) — M2(C) be given by [a;;] — [a;;]T.
Then

e ¢ is positive: Let a € M3(C)4. Then a = b*b for some b € M(C); and
p(a) = @(b) = (bb)" =T ()" =bT(b7)" = p(b)p(b)* = 0.

€11 €12

e ¢ is not 2-positive: Let [ ] € M3 (M32(C))4+ (see the proof of Proposition 1.5.12). However,

€21 €22
l1 0] lo 0]
. €11 €12 _ el, €T, _ 0 0 1 0
€21 €22 ele ezTQ 0 1 0 0
0 0 0 1

where the middle matrix is not positive, since it has determinant —1.

O |= O O

0
0
0
1

o O O =
oo = O

Examples of c.p. maps. (1) Let E C A be an operator subsystem. If ¢: E — C(Q) (where Q is a
compact Hausdorff topological space) is positive, then ¢ must be c.p.
Proof. Let n > 1 and let [a;;] € M, (E)4. Then
en(lai]) = [p(aij)] € Mn(C(Q)) = C(Q, M, (C)).
851
We must show that Yw € Q, [p(a;;)(w)] > 0 or, equivalently, a*[¢(a;;)(w)]e >0, Vo= | : | € M, 1(C).

o7

We have a*[¢(ai;)(w)]a =32, ;@ip(ay)(w)a; = ¢ (Zi,j OTiaijaj) (w) = ¢(a”[ag]e)(w) = 0, by positivity
of . O



@ If 7: A — B is a *~homomorphism, then 7 is positive. In fact, 7 is c.p. (since m,: M, (A) — M, (B)
is a *-homomorphism for all n > 1).

Definition 1.3. Let ¢: A — B be linear and bounded. We say that ¢ is completely bounded (c.b.) if
ellet, = sup [l@nll < oco.

If ||o|lep < 1, we say that ¢ is completely contractive (c.c.). If all ¢, are isometries, we say that ¢ is a
complete isometry.

Remark 1.4. Let ¢: A — B be a positive, linear map. Then:

(1) ¢(Asa) C Bsa.
(2) p(a*) = ¢(a)* for all a € A.

Proof. (1) Follows from a € Ay, = a = a4 —a_ with aq,a_ € Ay.
(2) Let a € A. Then a = ag + iay, where
a+a* a—a*
B R Y

By using (1), p(a)* = (p(ar +iar))" = (p(ar) +iv(ar))” = plar)” —iv(ar)” = plar —iar) = ¢(a”). O

€ Asa.

On the connection between order and norms
Recall that if ¢: A — C is positive and linear, where A is unital, then ¢ is bounded with |¢|| = ¢(1).
The state space of A is given by
S(A) = {p: A — C positive and linear : ||¢| = 1}.

Proposition 1.5. Let A, B be C*-algebras. If p: A — B is positive and linear, then ¢ is bounded.
Suppose further that A is unital. If, moreover, ¢ is 2-positive, then

lell = Nl

In particular, if ¢ is c.p., then ¢ is c.b. with

el = llellen = lle)]l-

(Hence, if ¢ is unital and c.p. (u.c.p.), then ¢ is completely contractive.)

Proof. We first show that ¢: A — B positive and linear implies that ¢ is bounded. Consider the family
{fow|fe€S(B)}. Then forall f € S(B),

[(Fee)(a)l < lela)ll, acA.
By the Uniform boundedness principle, there exists K > 0 such that

[(fep)a)| < Klal, feS(B), acA
This implies that
le(a)l < Kllall, a € Asa.

(Use the fact that for any self-adjoint element in a C*-algebra, there exists a (pure) state on the C*-
algebra, whose absolute value on the given self-adjoint element is equal to the norm of that element.)
From here we deduce that ||¢(a)| < 2K||a| for all a € A. Hence ¢ is bounded.



Now, suppose that A is unital and assume that ¢ is 2-positive. For all a € Ag,,
—llallla <a<lalla = —lalle(l) < ¢(a) < flalle(l) = [e(a)ll < [lalllle()].

To pass from Ag, to A, we use the following 2 x 2 matrix trick: Given a € A, set

0 *

= l “ ] e My(A).
a 0

Then @* = d, ||| ar,(4) = [lal|a. Note that

0 *"(“)*] 2@ = lle@)]

o is positive, a is self-adjoint, so by what we proved above, we have

le2(a)ll < llalllle2(D)]l,

or, equivalently, ||¢(a)|| < |lal|lll¢(1)]]. This implies that ||¢| < ||¢(1)||. We actually have equality. The

rest follows easily. O

Remark 1.6.

(i) The following sharper result is true (see Corollary 2.9, Paulsen):
If A, B are unital C*-algebras and ¢: A — B is positive and linear, then

lell = lle)l-

(ii) The statement that any c.p. map ¢: A — B satisfies

lell = llellen = lle)]

can also be obtained as a consequence of Stinespring’s theorem below.

Lemma 1.7. Let A be a unital C*-algebra and a € A. Then

1
la <1 & [ 1| € Ma(a).
a

"

0 1 0 0
l a] € My(A)y and 15 = [O 1] is the unit in Ms(A). Hence —15 < l N g] < 1o, which implies
a

Proof. “=":1f ||a|]| <1, then

‘ = max{|lal], ||} = [la] < 1.

a* 0

1
that 0 < l ¢
a* 1

1
“«<": Suppose that [ . ﬂ >0in My(A) C My(B(H)) (A C B(H)). Then for all £,n € H,
a

(-9

§
U

1 > = (£,€) + (an, &) + (a"&m) + (n,m)

= [[€]1* + 2Re(an, €) + |In]|?



Assume by contradiction that ||a|| > 1. Then there exist unit vectors {,n € H with (an,&) < —1. Then,

with the above calculations,
0 <14 2Re(an, &) +1=2+2Re(an, &) <2—-2=0,

a contradiction! Thus ||a|| < 1. O

Lemma 1.8. Let v € B(H). Then v is self-adjoint and —1g < v < 1y if and only if
lo—itly|| < V1+1t2, teR.

Proof. “=": o(v) C [-1,1]. By functional calculus, v € C*(v) C B(H) corresponds to f(A) = A and
v —itly corresponds to g(A) = A — it in C(o(v)), where A € o(v). Hence

o —itly|| = A —it]oo = sup |A—it| = sup VA2 +12</1+¢2
teo(v) A€o (v)

since o(v) C [-1,1].
“<": Suppose v = a + ib, with a, b self-adjoint. Then
v—itlg =a+i(b—tlg) = |(a+i(b—tlg))* (a+i(b—tlg))|=la+i(b—tlg) P <1+, teR
—_———
v—itly
= 0< (a+i(b—tlg)(a+i(b—tly)) <1+, teR
= 0<a*a+iab—iba+b*>—2bt <1y, teR,

x

so 0 <z —2bt < 1y for all £ € R. This implies that b = 0, and therefore v = a is self-adjoint. Then
|(v—itly)*(v—itly)| = |[v—itlg|]®> < 1+t* for all t € R. Since v is self-adjoint, (v—itly)*(v—itly) =

v2 + 21y, so we get

0< >+l <lpg+tly = 0<v?* <1y = ||v|\2:||v*v||:||v2||§1é v <1= -1y <wv <1y,

completing the proof. O

Proposition 1.9. Let A, B be unital C*-algebras. If o: A — B is unital (i.e., o(14) = 1) and contrac-

tive (respectively, c.c.), then ¢ is positive (respectively, c.p.).

Proof (Arveson, 1969). If 0 < a < 14, then 0 <14 —a < 14. Then by Lemma 1.8, ||(14 —a) —itlal]] <
V142 for all t € R. Since ¢ is contractive, |[p((14 —a) —itla)|| < V1 +t2forallt € R. As o(14) = 15,
this becomes

115 — pla) — itlp] < VT2
for all t € R. Using Lemma 1.8 again, we get —1p < 15 —p(a) < 1p, implying ¢(a) > 0. For an arbitrary
a >0, we have 0 < ﬁ < 14. The argument above shows that ¢ (%) > 0, i.e., ¢(a) > 0. O

llall

Recall the GNS representation for positive linear functionals:

Let A be a unital C*-algebra. If p: A — C is positive and linear, then there exists a Hilbert space K
and a unital *-representation 7: A — B(K) and ¢ € K with [|£]|? = ||¢|| such that

pla) = (m(a)s, &) = E'm(a)s, a€ A,



where £: C — K is given by a — af and £* is the adjoint map K — C. Moreover, K = W(A)EH.H, ie., &
is a cyclic vector for 7 (or, 7 is a cyclic representation with cyclic vector ).

Theorem 1.10 (Stinespring, 1955). Let A be a unital C*-algebra, and let H be a Hilbert space. If o: A —
B(H) is completely positive linear map, then there exists a Hilbert space K, a unital *-representation
m: A— B(K) and V: H — K such that

pla) =V*r(a)V, a€A.

In particular, |||l = |[V*V|| = |l@(1)||, which, applied to @, implies than ||l = [Jon(1ar, a)) |l = le(1)]]
for-alln =1, so [lpllcr = [l]-

Proof. Define a sesquilinear form (-,-),, on (the algebraic tensor product A ® H) by

n m 51 m
<Zai®&,zbj®ﬂj> 1:< [p(bjai)]l | i, : >
i=1 j=1

——
¥ EMm,n(B(H)) fn Tim Hm
= > (prai)é,n)u.
4,J

Note that (-, ), is positive semidefinite, i.e.,

n n G| &
<Zai®§ivzai®§i> = < lp(aja)] | 2|, ]: > >0
i= i= S
' ' 7 mpulazad) (€] [6n] .
since ¢, is positive and[aja;] € M,(A)4, as we have
aj
[ajai] = [a1,...,a,] = "¢ >0,
a’:t EJ\/jl,n(A)
EM",I(A)
where ¢ = [ay, ..., ay]. Let
N= {Zaim S A@H‘ <Zai®&,§jai®&> =0, n €N
i=1 i=1 i=1 "

Note that N is a left A-module, ie., ifa € Aand > 1, a; ®& € N, then

a (iai(@gi) = iaai@)& € N.
=1

i=1
This follows from the following:

Claim. Ifr € A® H, a € A, then

(az, az)y < lal*(z, 2),



Proof of claim. Let © = Y@ a;, ®& € A® H, for some n € N. Set ¢ = [a1,...,a,] € My ,(A),
E=[&,...,&] € H". Then

plajar) -+ plajan)| |G| |&
(on(cc)E, §) = : : S >
gp(ajlal) T (p(azan) fn gn Hn

= ZW(Q;%)&,@‘M = (z,2),.
%,
Similarly, we see that
(pn(c*a*ac)é, &) = Z(gp(a;a*aai)fi,@h{ = (azx,ax),.
i’j
Now, c*a*ac < |al|?c*e, so pn(c*a*ac) < @,(c*c)||all? (since ¢, is positive), hence (p,(c*a*ac)E, €) <

llal|?(@n(c*e)€, €). Done!

Now consider A®H/N. Then (-,-), is an inner product on it. Let K be the Hilbert space completion of
(ACH/N, (-,+),). Given a € A, define my(a): AOH/N — AOH/N by

[n n

Y aieg leaai®€i

Li=1 i=1

mo(a) is a well-defined linear map (since N is a left A-module). Now, by the Claim,
n 7] 2 n n

Wo(a)<lzai®€i ) :‘ [Zaai@)& [Zai®§i
i=1 _ i=1 i=1

So ||mo(a)]] < |lal|, i-e., mo(a) is a bounded operator on A©H/N. Hence we can extend it uniquely to 7(a) €
B(K), satisfying ||7(a)|| < ||a||. We thus obtain a map 7: A — B(K), satisfying ||7(a)|| < |la||,Va € A.

2 2

< [lal?

Note now that 7 is a unital *~homomorphism. Indeed,
e T(N(Da;®&]) =D"1-a;, ®&] =D a; ® &) implies 7(1) = Idg, i.e., 7 is unital.
o m(ab)([Xoai @ &) = [ aba; ® &] = w(a)([X2 ba; @ &) = w(a)m(b)([X ai @ &]), implying m(ab) =
m(a)w(b).
e 7(a*) = m(a) by similar computations.
Now let V: H — K be defined by
V) =ef, {cH.
Let a € A. Then for all £, € H,

(Vim(a)VE,mu = (r(a)VE Vi) x

(
(r(@)l e, 1l en)x
(
(

[a® ], 1@k
- 90(1*0‘)57 77>H - <Q0(a)£a 77>Ha
implying V*m(a)V = ¢(a),Va € A. It follows that ||V*V]| = ||¢(1)||. On the other hand, for all a € A,

le(@)]| = IV @V < [VIP|lw(a)]l < lall[VI,



so [lell < [VI* = lleMI < llell, hence [loll = [lp(D)]- So ll¢] = lle(L)] = [[V*V]. Applying this to the
¢.p- map @n, we get [[onll = [[on(Dl = (D] = [l¢ll, hence @ is c.b. with [[¢]len = [lell u

Remark 1.11 (Remark 1.5.5 [BO)]). (m, K, V) is called o Stinespring dilation of ¢. If ¢ is unital, then
V*V =¢(1) =1, so V is an isometry. The projection VV* € B(K) is called the Stinespring projection.
A Stinespring dilation is not unique. We may assume that (w, K, V') is minimal, in the sense that
~ava - k.

(This condition holds for the construction above.) Note that under the minimality assumption, a Stine-

spring dilation is unique up to unitary equivalence (Paulsen, Proposition 4.2).



Lecture 2, GOADyn
September 9, 2021

Multiplicative domains

Proposition 2.1 (Proposition 1.5.7 [BO]). Let A, B be C*-algebras and p: A — B be c.c.p. (contractive
c.p.) Then the following holds:
(1) (Schwarz inequality): p(a)*p(a) < p(a*a) for all a € A.
(2) (Bimodule property): Given a € A, if p(a)*¢(a) = p(a*a), then p(ba) = ¢(b)p(a) for allb € A,
respectively, if p(a)p(a)* = p(aa*), then p(ab) = ¢(a)p(b) for allb € A.
(3) Ay, ={a € A : p(a)*p(a) = p(a*a) and (a)p(a)* = ¢(aa)*} is a C*-subalgebra of A.

Proof. (1) Let B C B(H) be a faithful *-representation and (7, K,V) a minimal Stinespring dilation of
p: A— B C B(H). Then, for all a € A,
pla*a) - pla)pla) = V*r(a) (1 — VV*)m(a)V = 0
since |V < 1.
(2) Let a € A with p(a*a) = p(a)*¢(a). This is equivalent to (1x — VV*)'/27(a)V = 0. Then Vb € A,
w(ba) — pb)p(a) =V*r(b)(1x — VV*)m(a)V = 0.

The other statement follows similarly.
(3) Follows from (2). O

Definition 2.2 (Definition 1.5.8 [BO]). Let ¢: A — B be a c.p. map. The C*-algebra A, is called the

multiplicative domain of .

Note that A, is the largest C*-subalgebra C' of A such that ¢|c is a *~homomorphism.

Conditional expectations (important examples of c.c.p. maps)

Definition 2.3 (Definition 1.5.9 [BO]). Let B C A be (unital) C*-algebras (if they are unital, then
1p =14 does not necessarily hold).
e A projection from A onto B is a linear map E: A — B such that E(b) = b, for allb € B.

e A conditional expectation from A onto B is a c.c.p. projection E: A — B onto such that E(bxb') =
bE(x)V, for allz € A, b,V € B, i.e., E is a B-bimodule map.

Theorem 2.4 (Tomiyama, Theorem 1.5.10 [BO]). Let B C A be (unital) C*-algebras and E: A — B be
a projection onto. The following are equivalent:

(1) E is a conditional expectation.

(2) E is c.c.p.

(3) E is contractive.

Proof. Clearly (1) = (2) = (3).
We show (3) = (1). By passing to second duals, we may assume that A and B are von Neumann algebras
with units 14 and 1p, respectively (again, 14 = 15 may not be true). (One needs to check that E: A — B

being a contractive projection implies that E**: A** — B** is a contractive projection.)



First, we prove E is a B-bimodule map. Since von Neumann algebras are the norm-closed linear span
of their projections, it suffices to check the module property on projections. Let p € B be a projection,
and set p- =14 —p. Forevery . € A, t € R,

(1+t)?lpE(@ra)I> = |pE(pTa+ tpE(p*a))|?
< |ptz+tpE@ra)|?

)
< lptal® + 2 pE(pta)l?, (2.3)

since B > pE(ptz) = E(pE(ptr)) and E is contractive. Inequality (x) follows from the following
computations: Set y = ptx + tpE(p*x), so
Iy = lly*yll
= |la*pra + 2 E(pTa) pE(pra)|
< |lz*p*al| + | E(pTz) pE(p )|
= llp*z|* + 2 |pE(p-2)|
(using ptp = 0 = ppt at second equality), so (x) is justified. By (2.3) we therefore have
IpE(p*a)|* + 2t |[pE(p*2)[* < [lp* =)
for all t € R, so pE(p*x) = 0, for all projections p € B and all z € A. In particular, for p = 15 we get
0=1gE(l3z) = E(15z), =€ A.
B
€

Respectively, for any projection p € B, 15 — p is also a projection in B, hence
(1z =p)E((1p —p)ta) =0

forallz € A. But (1p —p)t =14 — 1 +p =15 +p, implying E((15 —p)*t2) = E((15 + p)z) = E(pz),
since E(15z) = 0 from above. Hence, for all z € A, (15 — p)E(pz) = 0 which implies

)=
E(pz) = 13E(px) = pE(px) = pE(x — prx) = pE(x),

since pE(p*x) = 0 from above. Therefore we have proved that E(px) = pE(z), for all projections p € B
and all € A. Similarly, E(xp) = E(x)p, for all projections p € B and all z € A. We conclude that E is
a B-bimodule map.

Note that F is a unital map, since bE(14) = E(b) = b, for all b € B, so E(14) = 1p. Since E is then a
unital contraction (||E|| = 1), E is positive (by Proposition 1.10, Lecture 1).

It remains to show that E is c¢.p. For this, we will use the following:

Lemma 2.5. Let A be a unital C*-algebra, let n € N and © € M, (A). Then x € M, (A)+ if and only if
b*zb e Ay for allbe M, 1(A).

Proof. “=": Well-known.
“«=": Suppose by contradiction that x = [x;;] is not positive in M,,(A). Set B = C*(z;;,1 : 1 <4,j <
n) C A. Then B is separable and unital, x € M, (B) and x is not positive in M, (B). Choose a faithful



state p € S(B) and let (m,, H,,§,) be the corresponding GNS representation. Then 7,: B — B(H,) is
faithful (inj), and so is also (m,)n: M, (B) — B(H,'). Hence (7,)n(z) is not positive in B(H'). Note that

7o (b1)€p

is dense. Hence ((m,)n(x)¢, &) # 0 for some

To(b1)E,
s=| 1 |ek
T (bn)€p
By letting
by
b=|:| €Mp1(B) C M,:1(A)
bn

and observing that
((mp)n(@)€, &) = Z<7"p<b;$jibi>€p7fp> = (mp(b"2b)&p, &),
,J

we now get a contradiction. O

We return to the proof of the statement that E: A — B is completely positive: Take x € M,,(A4);. We
must show that E,(z) € M, (B)+. By the above lemma, it is enough to show that

by
b*E,(x)be By forallb=|: | € M,1(B).
bn
We have
b En(x)b =Y biE(zji)bi =Y E(bjajib) = E | Y biab; | = E(b*ab) > 0.
i, i, ij
The proof is complete. O

Lemma 2.6 (Lemma 1.5.11 [BOJ). Let M be a von Neumann algebra with a faithful, normal, tracial
state 7. Let 1p0 € N C M be a von Neumann subalgebra. Then there exists a unique normal conditional

expectation E: M — N that is T-preserving, i.e., To E = 7.

Proof. Let a,y € M. Let a = ula| be the polar decomposition of a in M. Note that u, |a| € M. (The fact
that |a| € M is clear, while u € M, since M > ula|'/™ — u SOT.)



Claim 1. |7(ya)| < |lyl|7(|a|). Indeed,
Im(ya)| = |7 (yulal) = 7 (yulal'/|a]'/?)]

5
< 7(yufa]" a2 wy*) 27 (|a])
Tl

= 7(yulal(yu)")"*7(ja))"/?

(2)
< llyull(laf)
(3)
< llylir(lal)-

(1) Here we use the Cauchy-Schwarz inequality for a positive linear functional ¢: A — C:

lp(z*2))? < p(z*2)p(z*z), =2 € A,

obtained by defining (z,z), := ¢(z*z) and using the Cauchy-Schwarz inequality for positive definite
sesquilinear forms. Here z = (yu|a|'/?)*, z = |a|*/2.

(2) With w = yu, we have 7(w|a|w*) = 7(w*wla|) = 7(|a|*?w*w|a|/?) < |[w*w|7(|a|) = |w|/*7(|a|).
(3) u is a partial isometry, so u*u is a projection, implying ||u| = 1.

For each a € N, define 7,: N — C by

Ta(y) = T(ya), y€N.

Then by Claim 1, |7, (y)| = |7(ya)| < ||yl (|a|), implying 7, € N* with ||7.]| < 7(|a]). In fact, ||74]] = 7(|a|)
(since |14 (u*)| = |7 (u*a)| = 7(|a]), since u*a = |a| and ||u*|| = ||Ju|| = 1).
Note that 7, is normal. Suppose first that ¢ > 0. Then 7, is a positive linear functional, so to prove
normality, it suffices to show that if 0 <y, y SOT, then
T(yaa) = Ta<ya) — Ta<y) = T(ya)'

This follows from normality of 7. For the general case, an arbitrary a € N is a linear combination of 4

positive elements, and a linear combination of normal functionals is normal.

Claim 2. {7, : a € N} is a norm-dense subspace of N,.

If it were not norm-dense, then by Hahn-Banach, there would exist 0 # n € (N,)* = N such that 7,(n) =0

for all @ € N. In particular, 7,,« (n) = 0 implying 7(n*n) = 0. But 7 is faithful, so n = 0, contradiction!

Construct E: M — N as follows:
For all z € M, let E(z)(7,) := 7(za), for all a € N. Recall that

|E(2)(1a)| = |7(za)| < ||z[[7(|a]) = [|l2[[[|7al,

where the latter equality was shown above. Hence ||E(x)| < ||z||. Use Claim 2 to conclude that E(x)
extends uniquely to a linear functional (still denoted by E(z)) on N,, which is bounded with | E(z)|| < ||z]|.
So E: M — N is a well-defined contraction. Note also that for all z € M and a € N,

T(E(z)a) = E(x)(14) = T(za). (2.4)



In particular, for a = 1ps, we get 70 E' = 7 (F is 7-preserving). Next we show that F is a projection, i.e.,
for all x € M, E(E(z)) = E(x). Indeed, for all a € N,

E(E(x))(1a) = T(E(x)a) = 7(zva) = E(z)(7a)
by definition of F(x) and (2.4). By uniqueness, E(E(z)) = E(x).
Since F is a contractive projection, it follows from Tomiyama’s theorem that E is a conditional expectation.

Furthermore, we show that E is normal, i.e., for all x € My and 0 < z,  « SOT, sup E(z,) = E(x).
For this it suffices to show that for all a € N,

H(B()a) = 7((sup Bla))a).
which follows from normality of 7.
Now assume that E’ is another 7-preserving conditional expectation. Then for all z € M, a € N,
7(E'(x)a) = 7(E'(za)) = 7(za) = 7(E(xa)) = 7(E(x)a).
This implies £ = E’. O

Examples 2.7. (1) Let D,(C) C M,(C) be the subalgebra of diagonal matrices. Then the condi-
tional expectation E: M, (C) — D, (C) is given by

a1 0
E([ai]) =
0 Ann
(2) Let M = M,,(C), N = M,,(C), m,n € N. The conditional expectation E: M @ N - M ® 1,, is

given by
E(x@y):/ rRu'yudu, x€ M, y€E N,
ucn)
where U(C™) is the group of unitary operators on C" (compact in norm) and du is the Haar

measure on U (C").
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Proposition 3.1 (Proposition 1.5.12, [BO]). Let A be a C*-algebra and (e;;) be matriz units in M, (C).
A map ¢: M, (C) = A is c.p. if and only if [p(e;;)] € My(A)+. In other words,
CP(Mn(C), A) 3 ¢ — [p(ei;)] € Mn(A)4
is a bijective correspondence. (Here CP(M,,(C), A) denotes the set of c.p. maps from My (C) into A.)
Proof. “=": Suppose that ¢: M,(C) — A is c.p., in particular, ¢ is n-positive. Note that e := [e;;] €
(M,,(M,(C)))4, since we can show that
e? = ne. (%)

Since e is self adjoint, this implies that e is positive. To prove (), note that for all 1 <4,j < n,

(62)ij = Zeikekj = neéyj,
k:lji’j_/
as wanted. Since ¢, is positive, [p(e;;)] = @n([ei;]) € My (A) 4.
“e=": Assume that a = [p(e;;)] € M,(A)4+. Let a*/? := [by]. Then ¢(e;;) = Y p_; bfbr;. Let
A C B(H) be a faithful *-representation and define V: H — (2 @ (2 @ H by

VE= D) G@G @byt €€,
7,k=1

where ((;)}_; is the canonical unit vector basis in ¢2. Then for T = [t;;] € M,,(C), we have for all £, € H,

(VT @1, @1pm)Vn.§) = (T®1e 1)V, VE)

<(T® 101)) GRGebyn Y G®G ®blz’§>
J.k il
Z (T¢; ® G @ bijn, G @ (e @ bei&)

,,k,0

= )" (TG, Gi) (G Ce) (brm, bei€)

4,5,k,0

tij 1if k=¢,
0 else

Dty <Z bibrjn, £>
k=1

,j=1

:<80 Ztijeij 77,§>
,J

= {e(T)n, ).
Hence o(T) =V*(T ®1® 1)V for all T € M,,(C). Clearly, ¢ is positive and for all n > 1, if



then
V*(TV 0

@n(T) = = V;(@(@ln)(T)Vn

which is positive. Hence ¢ is c.p. O

Example 3.2 (Example 1.5.19, [BO]). Let ay,...,a, € A, and define ¢: M, (C) — A by

*

p(eij) = aiaj

By Proposition 3.1, ¢ is c.p. since

*
aia; - a1a

[ples)] = | “l=1: ol|: of =0

ana@) - apa

3 *

Remark 3.3. Let A be a C*-algebra, n € N. A linear map ¢: M,(C) — A is c.p. if and only if ¢ is

n-positive.

Proof. Suppose that ¢ is n-positive. By Proposition 3.1, it suffices to show that [¢(e;;)] € M,,(A)+. But
[0(eij)] = @n([eij]). We have seen in the proof of Proposition 3.1 that [e;;] € M,,(M,(C));. Use the fact

that ¢, is positive to get the conclusion. O

There is a similar characterization of c.p. maps from A into M, (C):
Given a linear map ¢: A — M,,(C), define ¢: M, (A) — C by

n

$(lai]) ==Y plaij)ij,
ij=1
where ¢(a;;);; is the (i, )™ entry of the matrix ¢(a;;). Put differently, if (¢;)7; is the canonical ONB

for 02, ¢ =1[C1,..., )T € (£2)™, then
P([ais]) = (pnllai])C, Q) [ai] € Mn(A).

Proposition 3.4 (Proposition 1.5.14, [BO]). Let A be a unital C*-algebra. A linear map ¢: A — M, (C)
is c.p. if and only if ¢ € M,(A)7%, meaning that ¢ is a positive (thus bounded) linear functional on
M, (A). Moreover,

CP(A, M, (C)) > pr— ¢ € My(A)}

is a bijective correspondence.
Proof. “=": This is easy: If ¢ is c.p., then ¢,, is positive, so with ¢ € (£2)" defined above,

¢(laij]) = (pn(lai])¢, ) >0,

whenever [a;;] € M, (A)4.
“<”: Suppose that ¢: M, (A) — C is a positive linear functional. Let (7, H, ) be the GNS triple for
$, i.e., m: M, (A) — B(H) is a unital *-representation, £ € H with ||£]|2 = ||¢|| and §(z) = (7(z)E, &) for



all € M, (A). Let (e;;) be the matrix units in M, (C), which can be viewed as elements in M, (A4), i.e.,
we identify

I

e =, | 1 1, | € Mu(A).

Define V: /2 — H by
V(G) =m(ey)§, 1<j<n,
extended by linearity. We claim that the following holds,

a 0
pla)=V*r V, a€A,
0 a
which implies that ¢ is c.p. For 1 <1,j < n, ¢(a);; = (¢(a)¢;,(;). Hence
a 0 [a 0]
<V*7T VCjaCi> = <7T VCj,VQ‘>
0 a _0 aj
3 o]
= <7T m(e1;)€, m(ews) §>
——
_0 a| (m(ein))*
J
0 -~ 0
= <7r i Coa £v€>
0 --- 0
J
0 .- 0
=9, a = @(a)ijv
0 --- 0
as wanted. O

Lemma 3.5 (Lemma 1.5.15, [BO]). Let A be a unital C*-algebra, E C A an operator subsystem and
Y: E — C be a positive linear functional. Then ||¢|| = ¥(14). Hence any norm-preserving extension of

1 to A is also positive.
Proof. Let € > 0. Fix x € E, ||z|| < 1 such that |¢(z)| > ||¢| —e. Upon replacing « by ax for some
a € C, |a| =1, we may assume that ¢(z) = [¢(z)| € R. Set

1
y= 5@ + 7).



Then ¥ (y) = 31(z) + 2¢(x) = ¥(z) (since 1(z) € R). As ||y < 1 and y = y*, we have y < 14. Thus

[l —e < P(z) = P(y) < P(1a) < 9]

As e > 0 was arbitrary, we conclude that ||¢] = ¥(14).
Now, let ¢: A — C, $|E = ¢ and |[¢| = |[%| = ¥(1a) = ¥(1a). Therefore ﬁz]; is a unital

contraction, and hence positive (by Proposition 1.9, Lecture 1). O

Remark 3.6. Using Proposition 3.4, one can now prove an analogue of the result in Remark 3.3, namely:

If A is a unital C*-algebra and E C A is an operator subsystem, then a linear map ¢: E — M, (C) is c.p.

if and only if ¢ is n-positive.

Corollary 3.7 (Corollary 1.5.16, [BO]). Let E C A be an operator subsystem and ¢: E — M,(C) a c.p.
map. Then there exists a c.p. map ¥: A — M, (C) extending .

Proof. If ¢: E — M,(C) is c.p., then ¢: M, (E) — C is positive (as M, (F) C M,(A) is an operator
subsystem). (The argument is the same as in the proof of “=” in Proposition 3.4.) By Hahn-Banach,
there exists p1: M, (A) — C such that $1|pr, gy = ¢ and [|@1]| = ||@]|, yielding the following commutative

diagram:
M, (A)
T 3¢
EN
@

By Lemma 3.5, ¢ is positive. By Proposition 3.4, applying the 1-1 correspondence in reverse, there exists
Y : A— M,(C) c.p. such that )= 1, which will imply that ¥|gp = ¢. O

Arveson’s extension theorem

Theorem 3.8 (Theorem 1.6.1, [BO]). Let A be a unital C*-algebra, E C A an operator subsystem. Then
every c.c.p. map ¢: E — B(H) extends to a c.c.p. map ¢: A — B(H), i.e., the following diagram

commutes:

Proof. Let (p;)ier C B(H) be an increasing net of finite rank projections such that p; — 1p(g) SOT. (If
H is separable, and (e,)n>1 is an ONB for H, one can take p,, to be the projection onto Span{ei, ..., ey}.
In the general case, one may take the net of all finite rank projections.)

For all i € I, we define ¢;: E — p; B(H)p;, by

0i(b) = pio(b)p;, bEE.



Then ¢; is a c.c.p. map and p; B(H)p; ~ B(p;H) is a matrix algebra. By Corollary 3.7, ¢; extends to a
c.p. map ; on A:

3@ c.p.

e
Pi

—— piB(H)p; C B(H)

tq<—>_a>

~

such that @5 = @i and [|@]| = [[@i(1)[| = [le:(1)]| < 1 since [|p;]| < 1. Therefore ¢; is a contraction.
Hence ¢; € B(A, B(H))1 (the closed unit ball of B(A, B(H))). Note that B(A, B(H)) is a dual space.

In general, if X is a Banach space and M is a von Neumann algebra, consider B(X, M). Let Ey C
B(X, M)* be the space

Ey=Span{z® &€ B(X,M)* : x € X, £ € M.},

where (z ® &)(T) = &(Tx) for all T € B(X,M). Then E = EH'H is a Banach space and E* = B(X, M),

in the sense that for every A € E*, there is a unique 7' € B(X, M) such that A(p) = o(T), for all p € E.
Moreover, ||A|| = ||T||. We denote E by B(X, M),.. By Alaoglu’s theorem, the closed unit ball B(X, M),
of B(X, M) is compact in the w*-topology coming from the duality B(X, M) = E*. Hence, if (T)) is a net
in B(X, M)y, then it has a subnet (T} ,) which converges w* to some T' € B(X, M)y, i.e., o(Ty,) — o(T),
for all p € E. In particular,

§(Th,(z)) = E(T(x), =eX, e M.,

i.e., the net (7),) converges point-ultraweakly to T'.
Back to our setting, there exists ¢ € B(A, B(H)); such that ¢; — ¢ in the point-ultraweak topology.

We have to show that (1) @ is c.c.p. and that (2) @|p = ¢.

(2) For any b € E, 3;(b) = pip(b)p; since G;|p = ¢i. Moreover, ||@;(b)|| < ||b]| for all i € I. Recall that
pi — 1p) SOT. This will imply that p;p(b)p; — ¢(b) WOT, and we have that ||p;p(b)ps| < [l¢(D)]],
for all 4 € I. Since on bounded sets in B(H), WOT = ultraweak topology, we deduce that ¢(b) = ¢(b).
Hence ¢|g = ¢.

(D ¢ is contractive (clear). ¢ is also positive: Let a € A,. Since @;(a) — @(a) ultraweakly and hence
WOT, and @;(a) > 0 (since ¢; is positive), we deduce ¢(a) > 0. A similar argument applies to the
amplifications ($;), to conclude that @ is c.p. O

Injectivity and Arveson’s theorem (Remark 1.6.2, [BO]):

Definition 3.9 (Injective C*-algebras). Let A be a C*-algebra. We say that A is injective if whenever
E C B is an operator subsystem of a C*-algebra B and p: E — A is a c.c.p. map then there exists
@: B — A cc.p. with §|g = ¢:

B

j\ 3@ c.c.p.
SN

E— A

@ c.c.p.

A wvon Neumann algebra is called injective if it is injective as a C*-algebra.



By Arveson’s extension theorem, B(H) is an injective von Neumann algebra.

Injectivity of a von Neumann algebra can be characterized as follows:

Proposition 3.10. Let M C B(H) be a von Neumann algebra. Then M is injective if and only if there
exists a contractive projection P: B(H) — M onto, i.e., a conditional expectation.

Theorem 3.11 (Pisier/Christensen—Sinclair, 1994). Let M C B(H) be a von Neumann algebra. Then
M 1is injective if and only if there exists a c.b. projection P: B(H) — M onto.
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Section 2.1 [BO]: Nuclear maps
Definition 4.1 (Definition 2.1.1, [BO]). Let A, B be C*-algebras. A bounded linear map 6: A — B is
called nuclear if there exist nets of contractive completely positive (c.c.p.) maps
on: A= Mpy(C),  n: Mypn)(C) = B (nel),
for some k(n) € N, such that 1, o p,, — 0 in the point-norm topology, i.e., ||, o pn(a) — 0(a)|| — 0, for
all a € A.

Remark 4.2. Since ¢, 0p,: A — B is c.c.p., for all n € N, then 0 is also c.c.p., whenever 0 is nuclear.

Definition 4.3. Let A be a C*-algebra and N a von Neumann algebra. A bounded linear map 6: A — N

is called weakly nuclear if there exists c.c.p. maps
On: A= Myy(C),  ¥n: Myy(C) = N (nel)
for some k(n) € N, such that ¥, o v, — 0 in the point-ultraweak topology, i.e.,
Yn 0 pn(a) 25 0(a), ac A,
or equivalently, n(¢y o pn(a)) = n(0(a)), for alla € A and n € N, (the predual of N ).
Remark 4.4 (Remark 2.1.3, [BO]). Assume N C B(H) is a von Neumann algebra. For every xz,y € H,
let gy : N — C be the vector functional ¢, ,(T) = (Tz,y), T € N. Then ¢, , € N, and, in fact,

span{@gy : T,y € H} is norm-dense in N,.
Let a € A. Since ¢y, o p,(a) is a bounded net (or sequence), then

Ynopn(a) =5 0(a) <= (hnopnla)v,w) — (Bla)v,w), v,wec H.
By the polarization identity, it is further sufficient to check (1, o v, (a)v,v) — (0(a)v,v), for allv € H.
Exercise: If 6 is weakly nuclear, then 6 is c.c.p.

Proposition 4.5 (Proposition 2.1.4, [BO]). If M C B(H) is a von Neumann algebra, then the inclusion
map i: M — B(H) is always weakly nuclear.

Proof. Choose an increasing net (p;);cr of finite dimensional projections in B(H), such that p; /1 SOT.
Set k; = dim(p;(H)). Then p; B(H)p; = B(p;(H)) = My, (C). Further, set

pi(a) = piap;, a€M

¥i(b) = b, b € B(pi(H)).
Then ¢;: M — B(p;(H)) and ¢;: B(p;(H)) — B(H) are c.c.p. and ¢; o ¢;(a) = p;ap;, for all a € M. For
all v e H,

(piapiv, w) = ( )—{av, w).

a piv , piw
~

—v —w

Hence p;ap; — a in the WOT-topology. But ||p;ap;|| < ||a|| for all i, hence p;ap; — a ultraweakly. O



Note: By contrast, the identity map ¢: M — M may not necessarily be weakly nuclear! In fact, i: M —
M is weakly nuclear if and only if M is an injective von Neumann algebra. Hence, if I' is a non-amenable
group, then the identity map i: L(I') — L(T") is not weakly nuclear. Here L(T") denotes the group von

Neumann algebra of T'.

Section 2.2 [BO]: Non-unital technicalities

The purpose of this section is to provide some technical tools that will help passing from the case of
not necessarily unital C*-algebras (or maps) to the unital one. Every non-unital C*-algebra A has a
unitization A which is a unital C*-algebra with unit 1 3, which contains A, and satisfies

A=A+Cly.
The unitization A is unique with these properties. The original C*-algebra A is a closed two-sided ideal
in ﬁ’ and X/A = C. Moreover, if B is any unital C*-algebra which contains A, then A is isomorphic
to A+ Clg. (Note that the latter always is a C*-algebra.) A quick way to construct A is by using the
embedding A < A** (the second dual). Recall that A** = 7, (A)” where 7, is the universal representation.
Since A** has a unit, we obtain A=A+ C1 gsx.
We will not cover in lectures any of the results in this section, but only mention (without proof) the

following:

Proposition 4.6 (Proposition 2.2.8, [BO]). Let M, N be von Neumann algebras, and let : M — N be

a unital, weakly nuclear map. Then there exist nets of normal u.c.p. maps
ont M = Myn)(C),  ¢n: My (C) > N
for some k(n) € N, such that 1, 0 @, = 0 in the point-ultraweak topology.
Section 2.3 [BO]: Nuclear and exact C*-algebras
Definition 4.7 (Definition 2.3.1, [BO]). A C*-algebra A is nuclear if ida: A — A is nuclear.

Definition 4.8 (Definition 2.3.2, [BO]). A C*-algebra A is exact if there exists a faithful representation
m: A — B(H) such that 7 is nuclear.

Remark 4.9. A positive map ¢: A — B (where A, B are C*-algebras) is called faithful if a € Ay and
w(a) = 0 imply that a = 0. A representation 7 is faithful if and only if it is one-to-one. (That one-to-one

implies faithful is obvious, and if w is faithful, then mw(a) = 0 implies w(a*a) = w(a)*n(a) = 0, and thus
a*a =0, implying a = 0).
Remark 4.10. Let 7 : A — B(H) be a faithful representation of a C*-algebra A. Then, A is nuclear

if and only if the map m : A — w(A) is nuclear, while A is exact if and only if m is nuclear when 7 is

regarded as taking values in B(H). In particular, nuclearity implies exactness. (The converse is false.)
Definition 4.11 (Definition 2.3.3, [BO]). A von Neumann algebra M is called semidiscrete if the identity

map idp: M — M is weakly nuclear.

Note: It is a deep and difficult result of A. Connes that a (separable) von Neumann algebra factor (i.e.,
has trivial center) is semidiscrete if and only if it is injective.



With the tools developed so far, one can prove (see textbook) the following;:

Proposition 4.12 (Proposition 2.3.8, [BO]). Let A be a C*-algebra. If A** is semidiscrete, then A is

nuclear.

Section 2.4 [BO]: First examples

First, look up Exercises 2.1.1 and 2.1.2 in [BO]. The latter implies that finite dimensional C*-algebras
are nuclear. Furthermore, since inductive limits of nuclear C*-algebras are nuclear (see Exercise 2.3.7
[BOJ), we obtain:

Proposition 4.13 (Proposition 2.4.1, [BO]). Approzimately finite-dimensional (AF) algebras are nuclear.
A further important class of examples is given by:
Proposition 4.14 (Proposition 2.4.2, [BO]). Every abelian C*-algebra is nuclear.

Proof. (In the unital case.) Each unital abelian C*-algebra is isomorphic to C'(X) for some compact
Hausdorff space. Hence it suffices to show that if F is a finite subset of C'(X) and if € > 0, then, for some

n > 1, there are ucp maps
ox) L= cr — 2 o(x)

such that |[(¥o@)(f) — f|| <eforall f € F.
By compactness of X one can find a finite open cover {U;}7_; of X such that

ViVz,y e U;Vf € F:|f(x)— fy)] <&t
Choose z; € U; for each j and define ¢ by
(p(f):(f(xl)af(xQ)a7f(xn))7 fGC(X)

Note that ¢ is a unital *-homomorphism, and hence in particular a ucp map.
Let {h;}7; be a partition of the unit subordinate to the cover {U;}?_; (so that each h; is supported
inside U;, 0 < h; <1, and Y., h; = 1). Define ¢ by

P(A1, A2, o An) = zn:)\lhz
i=1
Then 1 is a ucp map. Observe that
(op)(N)@) = fledhi@),  feC(X), weX
It follows that

@) = @op)(N@) < 3 If @) = fl@lhi(x),  feCX), zeX.

1To see this, set
Us={ye X ||fly)— f(z)| <ecforall fe F}

for each € X, and then pick a finite subcover of {Uz }zex-



If f € F and if h;(z) > 0, then = € U; whence |f(x) — f(z;)| < e. This shows that

[f (@) = f (i) hi(z) < ehi(x)
for all x € X and for all f € F. Hence |[(¢ o p)(f) — f|| < e holds for all f € F. O

Note: In view of above result (and its proof), nuclearity is sometimes viewed as a noncommutative

analogue of having a partition of unity.
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Section 2.5 [BO]: C*-algebras associated to discrete groups

Let H be a Hilbert space. We denote by U(H) the set of all unitary operators in B(H). Note that U(H)
1_

*

is a group: if uy,us € U(H), then ujus € U(H), the identity operator I is in U(H) and we have u™! = u

for all w € U(H).
Let T" be a discrete group. A unitary representation of I' on a Hilbert space H is a group homomorphism
u: I' = U(H) for which we define us; = u(s) € U(H), for all s € I'. Note that u, = u(e) = I. Moreover,

we have u,-1 = (us) "' = (u,)* for all s € I'. Consider now

62(1“)—{]":1“%((: : Z|f(s)|2<oo},

sel’
equipped with the norm

1/2
1fll2 = (Zlf(8)|2> ., fe(D).

sel’
Then ¢2(T) is a Hilbert space with orthonormal basis {§, : s € I'}, where

6s(t)={ 1 ifs=t

0 else

Two very important unitary representations of I' on ¢?(I") are the following:

(1) The left regular representation X\: T — B(¢?(T")), given by \s(8;) = 6, s,t € L.
(2) The right reqular representation p: T' — B({*(T)), given by py(8;) = 6,5-1, s,t € T.
Note that A and p are unitarily equivalent: the intertwining unitary U: £2(T') — ¢2(T) is given by

Uét = 5t—1.

Indeed, for all s,t € T', U*psUdy = U psdy-1 = U*0p-145-1 = U*d(g)-1 = 05t = As0y, which shows that
A=U*pU.

Consider the group ring CI" of T, i.e.,

Cr = {Z ass @ as € C, only finitely many ay are non—zero}
sel’

We want to view CI" as a vector space over I'. By defining

(Z ass> <Z btt> = Z asbest (multiplication)

sel’ tel’ s, tel’
*
1 * . .
(E ass> = E ass ("-involution)
ser s€r

we make CT" into a *-algebra. Given a unitary representation s € I' — us € U(H) of T" on some Hilbert
space H, it gives rise to a unital *-homomorphism 7: CI' — B(H) such that

w(s) =us, sel.



This is a 1-1 correspondence. We let

o) =2 ¢ B2y,

The above inclusion is an embedding, since A: CI' — B(¢*(T")) is injective: indeed, if = Y, . a;t € CT
satisfies A(z) = 0, then for all s € T,
0= (A(@)6e,6s) = > _ ar(A(t)de,0s) = Y _ ar(61,65) = as.
tel ter
Hence z = 0.
We call C(T') the reduced group C*-algebra of T" (it is sometimes also denoted by C(T")). C5(T') is thus
the completion of CI" with respect to

[zllr = [[M2) | Bez(r))-
Similarly, we let C;(I") be the completion of CI' with respect to p.

Definition 5.1. The full (universal) group C*-algebra of T', denoted by C*(T'), is the completion of CI’
with respect to
|||« := sup{||7(z)|| : 7 is a (cyclic) representation of T'}.

Note that ||z, < ||z||1 (since ||7(s)|| =1 for all s € T").

Remark 5.2. If ' is an abelian discrete group, then C5(I') = C*(T"). (This holds more generally for
amenable groups, see Theorem 2.6.8, [BO].)

Example 5.3 (Example 2.5.1, [BO]). If T' = Z, then C5(I") = C(T). To prove this, let u = A(1) €
ULHD)). If >, o ark € CZ, then

A (Z akk> = Zakuk € C*(u).

kEZ kEZ
Hence u € A(CZ) C C*(u), so C3(Z) = C*(u) = C(o(u)). We claim that o(u) = T. Note that u is the
bilateral shift on ¢?(Z), i.e., ud, = 0,41 for all n € Z. Since u is a unitary, we have o(u) C T. To show
equality, let z € T. For k € N, set

k
Crz o= k712D (2)6;.
j=1
Then ||x,.|| = 1 and one can check that
k k k41
uChz = K2 (28100 = 2k Y (271050 = kT2 Y (2)5;.
Jj=1 Jj=1 j=2

Hence |[(u—2z-1)C .| = \/% —0as k — 00,580 z € o(u). (We say that (j , is a sequence of approximate
eigenvectors for z.)

A more general approach. Let I" be an abelian discrete group. Its (Pontryagin) dual is defined to be
I={p:T = T: ¢is a group homomorphism}.

Note that Z = T. Indeed, for z € T, let . € Z be given by ¢.(n) = 2", n € Z. Then z — . defines a
homomorphism T — 7. The fact that this map is onto follows from this: Given ¢ € Z, set z =¢(1) € T.
Then p(n) = ¢(1)" = 2" = p,(n) for all n € Z.



Theorem 5.4. IfT' is an abelian discrete group, then C5(I") = C(I).

Proof. If T is abelian, then C5(T') is abelian, so C5(T") = C(Q2), where  is the space of characters on
Cx(T).
Claim. €2 is homeomorphic to I.

Any ¢ € Q induces a ¢ € T' defined by ¢(t) = ¢(t), t € T. (If ¢ € Q, then t — ¢(t) belongs to I'.) Set
®: Q — T, where ®(p) = @, ¢ € Q. Then we must show that

(i) @ is continuous,

(ii) @ is 1-1, and
(iii) @ is onto,
so that ® is a homeomorphism.

(i) Let (¢a)a, ¢ € Q. Assume that ¢, — . Then ¢, (z) = ¢(z), for all z € C§(T'), which implies that
va(t) = @(t), for all t € T'. Hence @(pq)(t) = (p)(t), for all t € T, i.e., P(pa) = P(p).

(ii) Let ¢,9 € Q. Then ®(p) = ®(¢p) implies that () = (), for all t € ', hence p(z) = ¢(x), for all
x € CT'. So ¢(z) = ¢(x), for all z € C{(I'), and thus ¢ = 1.

(iii) Let ¢o € I'. Then ¢o: I' — B(C) is a one-dimensional representation. It extends to a *-
homomorphism ¢: CI' — B(C), and further to a *-representation ¢: C*(I') — B(C) = C. Since
C3(I') = C*(T") (which holds because T is abelian), we deduce that ¢ € Q and ®(¢) = o. O

Remark 5.5. C*(T) has the following universal property: Given any unitary representation u: I' — U(H)

of T, there exists a unique *-homomorphism 7, : C*(I') — B(H) such that m,(s) = us for all s € T".

Proposition 5.6 (Proposition 2.5.3, [BO]). The vector state T.: C5(I') — C given by Te(x) = (xde¢, ),
x € C5(I") defines a faithful tracial state on C3(T).

Proof. 7. is positive, since 7.(x*x) = (z*25,,6.) = ||xd.||* > 0. Hence 7, is a positive linear functional on
C3(T") with ||7e|| = 7e(e) = 1. Furthermore, 7. is tracial, since
1 ifst=e
Te()\s)\t) = <)\St66766> = <6St76€> =
0 else
1 ifts=e
Te(>\t>\s) = </\tsdeaae> = <6t8766> =
0 else.

Since st = e if and only if s = ¢! if and only if ts = e, it folllows that 7.(AsA\;) = Te(M\s ) for all s,¢ € T
Use that A(CT") is dense in C5(I") to deduce that

Te(zy) = Te(yx), w,y € CX(I).

Also, 7. is faithful: Let 0 < z € C3(T) with 7.(z) = (2J.,5.) = 0. Then 2!/25, = 0. Note that . is a
separating vector, i.e., if zd, = yd. for z,y € C5(T'), then = y. Indeed, we claim that if zé. = yd., then
for all s €T,

D05 = Tle(s-1)-1 = TPsg-10¢ = Pg—100c = pg-1Yde = Y,
since p,-1 commutes with C}(T), and then use that {ds; : s € I'} is an orthonormal basis for ¢2(T") to

conclude x = 3. So /26, = 0 does imply z = 0. g



Definition 5.7. The group von Neumann algebra associated to I' is
L(T) = vN(T') := C3(I)" € B(*(T)).

Theorem 5.8 (Fell’s Absorption Principle, Theorem 2.5.5, [BO]). Let w be a unitary representation of T’
on H. Then A ® 7 is unitarily equivalent to A\ ® 1y, i.e., there exists a unitary operator U: (2(T) @ H —
?(T) ® H such that A® 1y = U*(A@ m)U. (Roughly speaking, the left reqular representation absorbs all

other representations tensorially.)

Theorem 5.9 (Proposition 2.5.9 and Corollary 2.5.12, [BO]). Let A C T be a subgroup. Then C}(A) C
C;(T) (inclusion of C*-algebras). Moreover, there exists a c.c.p. projection E} : C5(T') — C5(A) onto,

i.e., a conditional expectation.

Proof. We follow Pisier (Proposition 8.5, Introduction to Operator Spaces). Define a map J : CA — CI
by J(AA(t)) = Ar(t), t € A. We claim that J extends to an isometric (C*-algebraic) embedding of C§(A)
into C§(I"). We know that CA 5 >~ ayAa(¢) (finite sum) AN > agAr(t) € CT'. We need to check that

1Y ada®l =11 ae(@®)]- (5.1)

Then, by the density of CA in C}(A), respectively, of CI' in C§(I'), it will follow that J extends to an
isometric map from C%(A) into C3(T').

To prove (5.1), let (67 )¢er be an orthonormal basis for ¢2(I") and (6)¢er be an orthonormal basis for
?2(A). Define Q@ = I'/A (the right cosets). For all ¢ € @, pick a transversal s(¢q) € g. Then T’ = quQAs(q)
(disjoint union). Then we have the set identification I' = A X @ by means of the map ts(q) — (¢, q).

Define a unitary map U: ¢*(A) ® £2(Q) — ¢*(T') by

We claim that

U*)\F(T)U = /\A(T) ® I[z(Q), re A (52)
Indeed, U*Ar(r)U (67 ® 62) = U*Ar (1)1, ) = U 0L,y = 01 @ 68 = (M (1) @ Liz()) (87 ® 6F), 7 € A.

By (5.2) it follows that U* (3 azAr(t))U = (3 e Aa(t)) ® Ip2(y - This implies that

1D ade @) = 10 ade (@)U = 1) andr(t)) © Lzl = | Y ceda(®)ll,

as wanted.
It remains to prove the existence of a conditional expectation. Let V: ¢2(A) — ¢*(T') be defined by
VoA =6F forallt € A CT. Then V is an isometry and

A
vl = 0 teA
0 t¢A,

since

t
<v*5;,59>:(5{,v59>:<55,55>:{0 7
1 t=s.
Now let E}: C5(I') — B(£*(A)) be defined by

E\(z) =V*zV, =z Ci(T).



Then E} is c.c.p. We claim that

So EX(CT) C C%(A). Then

EL(CT)) C C5(A) = C3(A).
cx(m)
) (EX acts as the identity on CI', which is dense in C5(I)), i.e.,

a conditional expectation. O

Hence E}; is a c.c.p. projection onto C5(A

Definition 5.10 (Definition 2.5.6, [BO]). A function ¢: I' — C is called positive definite if the matrix
[o(s7't)]ster € Mp(C)4 for every finite set F' C I'.

Fix a positive definite function ¢: I' — C and recall that C.(T") denotes the set of finitely supported
functions on I'. Define (-, -),: C¢(I') x C(I') = C by
(fr9)e = D @(s')f(D)g(s), f.geCe(D).
s,teF

One can check that (-, ), is positive semidefinite (use that ¢ is positive definite). Let £2(I) be the Hilbert
space completion of C.(I')/{f € C.(T) : (f, f), = 0}. We write f=1[fle 22(T), for all f € Ce(T).

Definition 5.11 (Definition 2.5.7, [BO]). Let ¢: I' — C be positive definite. Define A\?: T' — B(¢Z(T'))
by

N(f)=sf, sel,
where (s.f)(t) = f(s7't) for all t € T. Then A” is a unitary representation satisfying A? o A\¥ = \¥,, for
all s,t € I', and A? is an isometry for all s, as

INDIZ= D ey fs ) fs Ty = > (@) ) ) F) = IfI?

z,ycl’ z'y'el

where 2’ = s71z, ¥’ = s~y and hence 2~y = (2/)~!y’. Moreover,

<)‘s¢3€7 8€>s0 = <Ssa Se><p = 410(3), S € F,
S0 we can recover ¢ from (-567 Se%&_

Remark 5.12. Suppose that ¢: C*(I') — C is a positive linear functional. Then s +— ¢(s) is positive
definite on I'. Indeed, for all sq,...,s, € I', we have

[QO(Si_lsj)Hidnw)([sl - ] [ - snDZQ

since ¢ is completely positive. The GNS space of C*(I') with respect to ¢ is £2(T).

Definition 5.13 (Definition 2.5.10, [BO]). Let ¢: I = C be any function. Define w,: CI' — C by

we <Z att> =Y e

tel tel



and a multiplier m,: CI' — CI" by

My, <Z oztt> = Z o(t)ayt.

tel’ tel’

Theorem 5.14 (Theorem 2.5.11, [BO]). Let ¢: T' — C be a function with p(e) = 1. Then the following
are equivalent:

(1) ¢ is positive definite.
(2) There exists a unitary representation A, of I' on a Hilbert space H, and a unit vector &, such that
90(3) = </\<p(s)£gm§<p>; sel.

(3) The functional w, extends to a state on C*(I).
(4) The multiplier m,, extends to a u.c.p. map on either C*(I') or C5(I'), or extends to a normal u.c.p.

map on L(T).
Proof. We show (1)=(2)=(3)= (4) = (1).
(1)=(2): Let ¢: I' — C be positive definite. Then, as in Definition 5.11, there exists a Hilbert space
¢2(T'), a unitary representation \?: I' — U(¢2(T')) and a unit vector, namely b € (2 (T) such that
©(s) = (\?(8)de,0), seT.
This proves (2).
(2) = (3): By universality of C*(I"), the unitary representation A? from above extends to a unital *-
homomorphism A?: C*(I') — B(¢Z(T)). It is easy to see that
w(z) = (A?(2)de,dc), @€ CH(I),
defines a state on C*(T"). Moreover, if x =, . oyt € CT', then

w(x) =Y (A (H)de,be) = D> p(t)oy = w,.

tel tel

Hence w is the desired extension of w, to a state on C*(I).

(3) = (4): We first consider the L(I") case. Let C*(I') C B(H) be a faithful representation such that w,
extends to a normal state w on B(H). (One can take 7: C*(I') — B(H) to be the universal representation,
which is faithful, and where each state on C*(T') is represented by a vector state. This will do the job,
because each vector state is normal.) So we assume that w(T") = (T€,€), T € B(H), for some unit vector
&€ H. Let Ve : H— C be the projection onto C¢ ~ C. (V¢ is the adjoint of the map C> g+ B¢ € H.)
Note that ||Ve|| =1, and that
w(T)=VeTVe, T e B(H).

By Fell’s absorption principle, the two representations I' — U(¢*(T') @ H) given by t — A\ ® t and
t — A\ ® 1y are unitarily equivalent. Hence there exists U € U(¢*(T') ® H) such that

U()\t@)lH)U*:)\t@t, tel.
Let o: L(T') — B(/*(T')) ® B(H) be the normal *~homomorphism given by
o(x) =U(x®1g)U*, =zeL(T).



Next, note that there is a normal u.c.p. map v: B(¢2(I'))®@B(H) — B(¢*(T)) satisfying ¢ (S®T) = w(T)S,
for all S € B(¢*(")), T € B(H). Namely, the map defined by
U(@) = (Lexry ® Ve)z(Lery @ V), z € B(E*(T)) @ B(H).
This is called a slice map, and is usually denoted by idg(s2(r)) ® w. We deduce that
m = (idp(er) ®w) oo: L(T') = B(*(I))

is a normal u.c.p. map, as well. We claim that m: L(T') — L(T) is the normal u.c.p. extension of
my: CT' — CT'. To verify this, it suffices to show that m(X\;) = @(t)A; for all ¢ € I". Indeed,

m(Ae) = (idp(ery) ©@w)U A @ 1g)U" = (idpzr) @ w)(A @1)
= w(t) A\ = we(t) A = ©(t) A
By normality of m, since CT" is ultraweakly dense in L(T"), it follows that m(L(T")) C L(T), so m: L(T') —
L(T), as wanted. The restriction of m to C5(I') C L(T') gives a u.c.p. map m: C5(I') — L(T') that
extends my,: CI' — CI'. As m is norm-continuous, and CI' is norm-dense in C5(I"), we conclude that
m(C5(T)) C CX(T). So m: C}(I') — C;(T') is the desired u.c.p. extension of m,.
We finally show that m,, extends to a u.c.p. map m: C*(I') = C*(T"). The unitary representation
I'ss—seseld(C*T)eC*(I))
extends, by universality of C*(T"), to a unital *-homomorphism
A:C*T) - C*(T) @ C*(I).
As before, let idg«y ® wy: C*(I') @ C*(I') — C*(T') be the slice map determined by the condition
(ide=(ry @ wy)(r ®y) = wy(y)z, for all z,y € C*(I'). This is a u.c.p. map. Set
m = (idewry ® wy) 0 A: C*(I') — C*(T)
and note that m is u.c.p. Then for all t € T,
m(t) = (ido=(r) @ we)(t @ 1) = we(t) = p(t)t = my(1).
Hence m(z) = my(x) for all z € CT', so m extends m,,.
(4) = (1): If (4) holds, then m,: CI' — CI is u.c.p., where we view CI as a subalgebra of C*(T"), C5(T')
or L(T), respectively. We show that ¢ is positive definite. Take F' = {s1,...,8,} CT. Set
S1
S = [51 Y S”] € M,(CT), U= € M, (CT).
Sn
Then S*S = [s; 's;];; € M,,(CT) 4. Since my, is u.c.p., we get [my(s; 's;)]i; € M, (CT),. We claim that
lo(sisi)]ig = Ulme(si )i U™
This will imply that [p(s; 's;)]i.; € M, (C),, as wanted. To prove the claim, note that for k, £ € {1,...,n},
(Ul (571 8)))i U ke = seme (s 'se)sy
= skp(sy, se)sy tsesy T = p(sy se),

which is the (k,£) entry in [p(s; 's;)]i;. O

7



We will need the next result in the proof of Proposition 5.16 below:
Lemma 5.15. Let A C T be a subgroup and let pg: A — C be a positive definite function. Let p: T’ — C
be given by

) wo(s) ifseA
‘0(5)_{ 0 ifsdA.

Then ¢ is positive definite.

Proof. Let F' C T be a finite set. As I' is the disjoint union of left cosets, there exist ¢g1,...,g, € ' such
that

F CgiAU -+~ UgpA.
Set F; = FNgA, i=1,....,k. If s € F; and t € F;, i # j, then s7't ¢ A, so p(s~*t) = 0. This shows

that
k

[@(Silt)]s,teF = @[‘P(Silt)]s,tema

i=1
where the right hand side is the block-diagonal matrix with k blocks [p(s71t)]sser,. This matrix is
positive if and only if [p(s7 )]s tcr; is positive for all i = 1,..., k. Set G; = g;lFi C A. If s,t € F;, then
s = g;50, t = gito, where sq,ty € G; and s~ = salto. This shows that

[o(s™ )]s er: = lpo(sg t0)]so tocc

for all i = 1,..., k. The right hand side is positive because ¢ is positive definite on A. O

We are now ready to prove the following:

Proposition 5.16 (Proposition 2.5.8, [BO]). Let A C T be a subgroup. Then there exists a canonical
inclusion

C*(A) € C*(T).

Proof. By universality of C*(A), whenever B is a unital C*-algebra and mg: A — U(B) is a unitary
representation, there exists a (unique) *-homomorphism 7: C*(A) — B such that w(t) = mo(t) for all
t € A. Hence there exists a unique *-homomorphism 7: C*(A) — C*(I') such that w(¢) = t for all
t € A C T'. We must show that 7 is injective.

Let z € C*(A), © > 0, x # 0. It suffices to show that 7(z) # 0. There is a state w on C*(A) such that
w(x) # 0. Let ¢o: A — C be given by po(t) = w(t), t € A. Then ¢q is positive definite on A (by the
Remark after Definition 5.11). By the Lemma above, ¢ extends to a positive definite function ¢: I' — C,
and by (1) = (3) in Theorem 5.14, w, extends to a state on C*(I'). For each t € A,

(wy 0 7)(t) = wy (1) = p(t) = po(t) = w(t).
By continuity and linearity, this implies that w, o @ = w. Hence (w, o m)(z) = w(z) # 0, so m(x) # 0, as
desired. O



Lecture 6 (continued), GOADyn
September 27, 2021

Comments on sections 3.4-3.9

Recall from Section 3.3 (see hand-written notes-Lecture 6-on Tensor products):
Let A and B be C*-algebras.

Definition 6.1 (Definition 3.3.1, [BO]). A C*-norm || - || on A ® B is a norm such that
lzylla < lzllalylla; lNz*lla = llla;  lla*zlla = llzZ, 2yeAdoB.
We denote by A ®, B the completion of A ® B with respect to || - |-
Lemma 6.2 (Lemma 3.4.10, [BOJ). Any C*-norm || - ||o on A® B is a cross-norm, i.e.,
lz@ylla = llalllloll, a®beAOB.

Proof. To be discussed in lecture. O

C*-norms on algebraic tensor products do exist. The two most natural of them are the following:
e Maximal norm (Definition 3.3.3. [BO]): Given z € A ® B, set
12|l max := sup{||7(x)|||7: A® B — B(H) is a (cyclic) *~homomorphism}.

e Minimal (or spatial) norm (Definition 3.3.4. [BO)]): If 7: A — B(H), 0: B — B(K) are faithful
representations and z = Y, a; @ b; € A® B, then

“Zai@bi = HZﬂ(ai)Q@o(bi)H

We have seen that || - ||min is independent of the choice of faithful representations, and that || - ||min and
I - [lmax are, indeed, (C*-)norms on A ® B. We denote by A ®max B and A @i B (or, simply A ® B
in [BO]J) the completion of A ® B with respect to the norms || - || max and || - ||min, respectively. Another

B(H®K)

min

important feature of the maximal tensor product is the following universal property:

Proposition 6.3 (Proposition 3.3.7, [BO]). If 7 : A® B — C is a x-homomorphism, then there is a
unique *-homomorphism 7 : A Qmax B — C which extends .

As a consequence, we have the following result:
Corollary 6.4 (Corollary 3.3.8, [BO]). The mazimal norm || - || max s the largest C*-norm on A ® B.

A much harder result to prove is the following:

Theorem 6.5 (Takesaki, Theorem 3.4.8, [BO]). The minimal norm || - ||min s the smallest C*-norm on
A®B.
Proof. To be discussed in lecture. O

As a consequence of Takesaki’s theorem and the universality property of ||+ ||max, we obtain the following:



Corollary 6.6 (Corollary 3.4.9, [BO]). For any C*-norm || - ||o on A ® B, there are natural surjective
homomorphisms
AQ@max B—= A®q B = A ®min B,

where A ®,, B is the completion of A® B in the norm || - ||«
The next result, whose proof we omit, concerns continuity of tensor product maps:

Theorem 6.7 (Continuity of tensor product maps, Theorem 3.5.3, [BO]). Let A, B,C, D be C*-algebras
and ¢o: A— C, ¥: B— D be c.p. maps. Then p ©@¢Y: A® B — C ® D extends to c.p. maps

% Omax ¥ A Omax B = C Qmax D,
© @min ¥: A Omin B = C @min D.
Moreover, || @max ¢ = [l @min ¢[| = llell[[¥]-
We are now ready to discuss nuclearity in terms of tensor products:
Proposition 6.8 (Proposition 3.6.12, [BO]). If A is nuclear, then for all C*-algebras C,
A Rmax C = A Qmin C.
Proof. The proof below follows the proof of Lemma 3.6.2 in Brown-Ozawa. First note that
M;,(C) @max C = My, (C) @pin C (%)
because M,,(C) ® C = M, (C) (cf. Exercise 3.1.3, [BO]) and M,,(C) has a unique C*-norm. Since A is

nuclear, there exist nets (¢;)ier, (¥;)ics of c.c.p. maps
pit A= My@y(C), it My (C) — A
such that |[1; o p;(a) — a|| — 0 for all a € A. Using (%) and Theorem 6.7 we get that
0 = (i Pmax idc) 0 (9 Omin ide)
is a well-defined c.c.p. map from A ®pin C to A Quax C. In particular, ||o;|] < 1. Since

ogila®c)= (Yiopi)(a)®@c, a€A, ceC,

we have for alln € N, aq,...,a, € A and ¢q,...,c, € C that
n n
o (Z ar @ Ck) = (pioti)(ar) ® cx
k=1 k=1
and hence
n n
| > (@i o) (ar) ® ek <D ar @
k=1 max k=1 min
But since [|1); o ;(ar) — ag|| — 0 and since || - || max is & cross-norm (by Lemma 8.2 above), we get
n n n

Yoar®cr||  =lim|Y (piovi)(ar) @er| <D ar@ex

k=1 max k=1 max k=1 min
Hence || - [lmax < || - [[min o0 A © C, and therefore the two norms coincide. In other words, we have proved

that A ®max C = A Qmin C. O



Theorem 6.9 (Choi/Effros, Kirchberg 1973, Theorem 3.8.7, [BO]). For a C*-algebra A, the following

are equivalent:

(1) A is nuclear (i.e., id4 is a nuclear map).
(2) For every C*-algebra C,

A ®max C - A ®min C

Remark 6.10. (1)=-(2) is already proved above. The proof of (2)=- (1) is very involved (see Section
3.8).

Remark 6.11. Condition (2) above was the original definition of a nuclear C*-algebra A, due to C. Lance
(1973).

83.7. Exact sequences

A sequence

51 b2 d3 On
Xo X1 Xo Xn

of vector spaces (X;)I, and linear maps ¢;: X;_1 — X, is called exact if
Im(4;) = Ker(d;4+1), i=1,...,n—1.
If

5 é S é
0 e 2 X9 : X3 ® - 0 is a short exact sequence, (%)

then §; = 04 = 0, d2 is one-to-one, d3 is surjective, and since Im(d2) = Ker(ds), we have
X3 = X2/Im(6,).

If we think of d2 as an inclusion map and d3 as a quotient map, then (x) is just another way of writing
X1 C Xg and X3 = XQ/Xl.

Definition 6.12. We call
0 J A C 0

a short exact sequence of C*-algebras if J is a closed two-sided ideal in A and C' = A/J.

Remark 6.13. Let

0 J A Ay 0

be a short exact sequence of C*-algebras. Then it is easy to check that for all C'*-algebras B,
0—>JOB—>A0B— (4/))o B —=0
is an exact sequence of algebras, i.e. J ® B is a two-sided ideal in A ® B, and

(A©B)(joB)= (410 B



Proposition 6.14 (Proposition 3.7.1, [BOJ). Let

0 J A Ay 0

be a short exact sequence of C*-algebras. Then for all every C*-algebra B,
OHJ@maxB *>A®maxB — (A/J) ®maxB HO
is also a short exact sequence of C*-algebras.

Proposition 6.15 (Proposition 3.7.2, [BO]). Given J< A and B as above, then there exists a C*-norm
|- 1la on (A7) © B such that

0 —> J ®@min B——> A @uin B— (4/J) ®a B—0
18 an exact sequence.

Theorem 6.16 (Kirchberg, Theorem 3.9.1, [BO]). Let B be a C*-algebra. Then the following are equiv-

alent:

(1) B is exact.
(2) For every pair (A, J) of a C*-algebra A and a closed two-sided ideal J < A, the sequence

0—— J®minB *)A(X)minB —_— (A/J) ®minB*>0
s exact.

Remark 6.17. (1) = (2) is proved in Proposition 3.7.8 [BO]. The proof of (2) = (1) is very involved (see
Section 3.9).

Remark 6.18. Condition (2) above was Kirchberg’s original definition of an exact C*-algebra B.

Remark 6.19. A C*-algebra B is exact if and only if (2) holds for the pair
(4, J) = (B(H), K(H))

where H is a separable, infinite-dimensional Hilbert space (cf. Exercise 3.9.7, [BO]).
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Section 2.6: Amenable groups

In the following, let I" be a discrete group.

Definition 7.1 (Definition 2.6.1, [BO]). The group I is called amenable if there exists a state (=mean)
won £°(T') such that for all s € T and all f € £>°(T),

p(s.f) = p(f),
where (s.f)(t) = f(s71t), t € T, i.e., u is invariant under the left action of T'.

We will begin by proving that this is equivalent to the original definition of amenability given by John
von Neumann. (In what follows, P(€2) denotes the power set of (2.)

Theorem 7.2. A group I' is amenable if and only if there exists a finitely additive left-invariant measure
w: P(I) — [0,1] such that u(T') = 1.

Definition 7.3. Let Q be a set. A map u: P(Q) — [0,1] is a finitely additive probability measure on Q
if () =1and u(AUB) = u(A) 4+ u(B) whenever A and B are disjoint subsets of .
Let PM(Q) denote the set of all finitely additive probability measures on {2.

Example 7.4. Let F C Q be a finite subset, and define pp: P(Q2) — [0,1] by

AN F|

, AcCQ.

Then pp € PM ().

Let M(Q) be the set of all states (means) on £>°(Q2), so that M(Q) C (ZOO(Q));k We shal see that there
exists a one-to-one correspondence between M(£2) and PM(Q):

For each m € M(Q) let m: P(Q) — [0,1] be defined by m(A) = m(1a), for all A C Q. Note that
m € PM(). Let ®: M(Q2) — PM(2) be given by ®(m) = m.
Claim. ¢ is bijective.
For the proof, we need several facts.

(1) Let E(Q) denote the collection of all simple maps on €2, i.e., maps x: Q — R such that z(Q)
is finite. Then E(Q2) is a subspace of £*°(2), which moreover is dense in £*° () with respect to
|| - |lco- This means that each x € £>°(2) is the uniform limit of simple functions.

(2) Let p € PM(R). Define i: E(2) — R by

Bx) =Y ap(A), =) aila,
i=1 i—1

where (A;)?_, is a finite partition of Q. Note that fi(x) > 0 whenever z > 0. Then 7z: E(Q) — R
is a linear contraction. The latter follows from

[(z)] < sup [z(W)| = [#]loe, = € E().



By (1), & extends uniquely to some € M().
We show ®(jz) = pu, for all ;€ PM(Q), which will prove that ® is surjective. Indeed, for A C Q,

(p)(A) = 1(1a) = p(1a) = u(A).
To show that ® is injective, let mq,ma € M() be such that ®(m;) = ®(mz). Then my = Mo, ie.,
mi1(1la) = ma(la) for all A C Q. By linearity, m; = mg on E(Q), which by (1) and continuity implies
my = mg on £°(Q). O
Now assume that Q =T is a group. Given u € PM(T") and g € T, define gu: P(I') — [0,1] by
gu(A) = p(g~'A), ACT.
Note that gu € PM(T). Indeed, gu(T') = u(g~'T) = u(T') = 1, and if A, B C T are disjoint, then

gu(AUB) = (g~ (AUB)) = u(g ' AU 'B) = u(g " A) + (g~ "' B) = gu(A) + guu(B).
We say that u is left-invariant if gu = u, for all g € T'.
Some further constructions:
e For z € /(') and g € ' let gx: I' — R be given by (gz)(t) = z(g~1t), t € . Then gz € £>°(T")
with [|gz{lec = [|2] o
e For u € (*°(I)* and g € T, let gu: £>°(I') — R be given by (gu)(z) = u(g~'x), x € £>°(T'). Then
gu € ()" with [lgu| = [Jul]

Proof of Theorem 7.2: Let m € M(T"). Then m is left-invariant if and only if the associated finitely
additive probability measure 7 is left-invariant. This follows from the fact that gm = g for all g € T,
which can be verified as follows. For all A C I':

gin(A) = gm(1a) =m(g~ 1) L m(1,14) = Mg~ A) = gi(A),

where (x) holds because 7114 = 1,-14. O

Definition 7.5 (Definition 2.6.2, [BO]). The set of probability measures on I' is denoted by Prob(T), i.e.,

Prob(T') = {,u e M(T) : u>0, Zu(t) = 1}.

ter
Definition 7.6 (Definition 2.6.3, [BO]). T has an approzimate invariant mean if for any finite set £ C T’
and every € > 0, there exists p € Prob(T") such that

max |[s.p — pfls <e.
Recall that for two sets E, FF C T,
EAF=(EUF)\(ENF)=(E\F)U(F\E)=(E\(ENF)U(F\(ENF)).

Definition 7.7 (Definition 2.6.4, [BO]). T satisfies the Falner condition if for every finite set E C I" and
€ > 0 there exists a finite set F' C I' such that
max lsF A F| <e
seE  |F| ’
where sF = {st : t € F}. A sequence (F,,),>1 of finite subsets of I is called a Fglner sequence if
|sF,, A Fy|

—0 asn— o0
| Frl



for all s € T".

Remark 7.8. Since |sF A F| = |sF|+ |F| — 2|sF N F|, the Fglner condition is equivalent to

|sF'NEF| €
max >1— =

seE |F| 2"
If T satisfies the Fglner condition, then I' has an approximate invariant mean given by normalized char-
acteristic functions of finite subsets. Given F' C I" a finite subset, then (1/|F|)1p € Prob(I") and

HS 1 . 1 1 H |sF A\ F
il = el = e
|| [El ||

Example 7.9 (Example 2.6.7, [BO]). Fy (the free group on 2 generators a,b) is non-amenable:
Fo: e,a,a”t,b,b7 1t ab,ab™t,a?,a b, a 071, . ..
If € Fo, x # e, then & = 8182 - - - 8, (uniquely), where s; € {a,a™!,b,b7 !} and

(si,8i41) # (a,a™"), (a7 @), (0,671), (671, b).
$182 - -+ Sy, is called the reduced word of  and |z| = n is called the length of x. To multiply sq - - - spt1 - - - tg,
make a reduction by (successively) removing pairs of the form (a,a™1), (et a), (b,b71), (b71,b). Put
At = {all reduced words starting with a} C Fa,
A~ = {all reduced words starting with a~'} C Fy,
BT = {all reduced words starting with b} C Fo,
B~ = {all reduced words starting with b=} C Fy.

Then

(a) Fy = At UaA™ (if z ¢ AT, then either x = e € aA™ or z has the reduced form z = s1--- s, 51 # a,
so that

-1

r=51-S,=ala "s1---Sp) €EaA”,

since a~lsy - -+ s, is reduced).

(b) Fo = Bt UbB™.
(c) Fo={e}UATUA-UBTUB".
Assume that p is a left invariant mean on Fy. Consider m = i € PM (F3). Then m is left-invariant, so
m(sE) =m(E), s€TFy, E € P(Fs).
By (a) and (b), m(AT) +m(A47) > m(F2) = 1 and m(BT) + m(B~) > m(F3) = 1, and by (c),
1+1<m(AT)+m(A7)+m(BT)+m(B™) <1,
which is obviously wrong! Hence Fy is not amenable.

Theorem 7.10 (Theorem 2.6.8, [BO]). Let I' be a discrete group. Then the following are equivalent:

(1) T is amenable.
(2) T has an approzimate invariant mean.
(3) T satisfies the Folner condition.



(4) The trivial representation 7o is weakly contained in the regular representation, i.e., there exists a net
of unit vectors & € (?(T') such that for all s € T,

h?l A& — &ill2 = 0.

(5) There exists a net (@;)ier of finitely supported positive definite functions on ' such that lim; p;(s) = 1,
for all s € T'. (Note: Without loss of generality, we may assume p;(e) =1, for alli € I.)

(6) C*(1) = C(T).

(7) CX(T') has a character (a one-dimensional representation,).

(8) For any finite set E C T,

=1

1
P

seElR

(9) Cx(T) is nuclear.
(10) L(T") is semidiscrete.

Proof. (1) = (2): We will first prove the following statement:
Claim: For every state p on £°°(T)) there exists a net (1;);c; in Prob(T) such that v; —— p, meaning
that for all f € ¢>°(T"),

lim <Z f(s)w(s>> = ul(f)-
) sel’
—_— —
vi(f)
This is equivalent to showing that p € Prob(F)w (the w*-closure in ¢°°(T")*). If this was not true, then
by the Hahn-Banach separation theorem we could find f € ¢>°(T") such that
Reu(f) > sup{Rev(f) : v € Prob(T")}.

Replacing f by Re(f) we have a real function f € £°°(T') such that u(f) > sup{v(f) : v € Prob(I')}.
Since the Dirac measures dg given by
1 =1
B(t) = { .

0 s#t
are in Prob(T"), we have p(f) > sup{f(t) : t € T'}. Set fo = f —sup{f(t) : t € I'}. Then fy <0, but
w(fo) = p(f) —sup{f(t) : t € '} > 0, a contradiction! This proves the Claim.
Let p be a left-invariant state on £°°(T"). By the Claim, let (v;);cr be a net in Prob(T") such that v; — p
weak® (in £>°(T")*). Given s € I' and f € ¢>°(T"), we have
(i) () = D _(sw)(OF () = Y_wi(sT (1) = 3 valw)f(su) = vals™" ),

tel tel uel

which shows that (s.v;)(f) — u(s™!.f). Since p is left invariant, it follows that for all s € T,
s.v; —v; — 0 weak®.

But since s.v; — v; € £1(T) and £1(I')* = ¢>°(T), then s.v; — v; actually converges to 0 weakly in ¢*(T).
Now, let E C T be finite, with £ = {s1,...,s,}. Then

weak
(0,...,0) e{(s1.vi —Vi,...,SpVi —V;): 1 €I} .



where the weak closure is in
1 .. 1 ~ 1 : ... i
M@ o)~ MU UT)

n times

n times

Since convex sets in a Banach space have the same closure in norm and weak topology, we have

norm

0,...,0) € conv{(s1.v; — Vi, ..., sp.v; — ;) 14 €1} .
Therefore, there exists a net (i;);jes in conv{y; : i € I'} such that

l[s1op5 = pslls + -+ llsn-py — il = 0.

Hence for all € > 0 there exists j € J such that such that

gleaé(ﬂs.uj — il < Z lls.t5 — pjlls <e.
serR

This completes the proof of (1) =(2).

(2) = (3): Let E C I be finite and let € > 0 be given. Choose 1 € Prob(I") such that maxscg ||s.p—pll1 <

¢/|F| and hence
Z |s.pe — pll1 <e.
sek

Assume that f € ¢1(T')4, r > 0. Set

F(f,ry={tel : f(t) >r}.
Note that for f,h € ¢*(T),

Lt (®) = Lrguny (8] = { 0 if f(£),h(t) <7 or f(2), f)z(t)

1 ifh(t) <r< f(t)or f(t) <

>r
r < h(t)
Thus if both f <1 and h < 1, we can see (after some computations) that
1
10 =) = [ Ly ©) = Lr Ol
Let 4 € Prob(T'). Then p € ¢*(T')4 and Y pu(s) = 1. Hence pu(s) < 1 for all s € I'. Therefore

s = pll =Y [(su(t) = ()]

tel
1
-3 / Loy () — Ly (8)]dr
ter V0
1
_ / S e () = Lrgun (£)ldr
0 ter

= /O |F(s.p,7) AN F(u,r)|dr.

Since F(s.p,r) ={t €l : (su)t) >r}={t el :pst)>r}={tel :steFlur)}={tel:
t € sF(u,r)} = sF(u,r), we have

1
o=l = [ 1sFnr) & Fu )l
0



Using that
0 ifupl)<r
lpur(t) =
#un) () { 1 if w(t) > r,

a similar (but simpler) computation gives

L=l =S ut) =3 / L (t)dr = / \F s, ) dr.

tel tel
Therefore,

< [ 1 =2 > S el = [ 315 r) & Frar

sek seEE
Hence for some r € (0,1),

elF () > D |sF () A Fp,r))|-
selR

Hence with F' = F(u,r), for this particular r, we have
e|F| > |sFAF|, s€E.

In particular, |F'| > 0. Moreover |F| < oo, because when r > 0,

1 1 1
Pl < — > n(t) <=3 u(t) == <.
tEF (p,r) tel’

Thus we have found a non-empty set F' such that
|sFF A F|
||
for all s € F, i.e., I satisfies the Fglner condition.

<e

(3) = (4): By (3), there exists a net (F;) of non-empty finite subsets of I" such that
|sF; A Fy

| Fil
for all s € . Now put & = |Fi|~'/?1,. Then ||&]]2 = 1 and

— 0

Aséi — i =588 — & = W(lsﬂ —1g).
Thus | |
”)‘sgz_sz%: ‘F‘ Z(lsFi _1Fi)2(t) = |F| =0,

ter
which proves the assertion.

(4) = (5): Put ¢i(s) = (As&i, &), s € I'. Then by Theorem 5.14 (Theorem 2.5.11, [BOJ), ; is positive
definite and ¢;(e) = ||&]|? = 1. Moreover, p;(s) = (A& — &, &) + (&, &) = (Ns&i — &, &) + 1. Hence, for
all s €T,

lpi(s) = 1 = [(As& — &, &) | < A& — &illllSill = 1As&i — &ll = 0
Does ; have finite support? NO, not in general. But since &; € ¢?(I'), then for all n € N there exists a
finitely supported &; ,, € £2(T") such that ||&; — & nll2 < 1/n and ||& n]]2 = 1. Set

901',71(8) = <)‘s§i,n; £Z,n> .




Clearly ¢; n(s) = ¢i(s) as n — oo (for all s € I') and ¢; ,, has finite support because

1

supp(pin) C{s €T : Ju,y € supp(&in) : sz =y} = {yz™" : 2,y € supp(&.n)}

and the latter set is finite. Let P;(T") be the set of positive definite functions ¢ on I'" with ¢(e) = 1 and
C.(T') be the set of finitely supported functions on I'. Again by Theorem 6.14 (Theorem 2.5.11, [BOJ),
vin € PII)NC(T), so ¢; € W and finally 1 € W (here 1 is the constant function
1), where the closures are in the topology of pointwise convergence of functions. Hence there exists a net
(¢;)jes in Pi(I') N Cc(T) such that ¢;(s) — 1 for all s € I, proving (5).

(5) = (6): Since A is a unitary representation of T', X extends to a *-homomorphism A:

I C*(I)

N

Cx(I)

>

and the range of X is dense in C3(T') because it contains CI'. Hence by standard C*-algebra theory (see,
e.g., Zhw’s book, Theorem 11.1), A maps C*(I") onto C;(I'). To prove (5) = (6) we will show that if there
exists a net (¢;);er in P(T') N C,(T), converging pointwise to 1, then

Ker(\) = 0,
so that \ becomes a *-isomorphism. Let (¢;);es be such a net and let
me,: C*(T) = C*(T), mmy,,: C3(I') = C5(T)
be the corresponding u.c.p. multipliers on C*(I") and C5(T") from Theorem 6.14 (4). Then the diagram

My,

C*(I) —= C*(I) (%)

Cr(IT) — ()

m T
i
commutes. For this, it is enough to check that for s € T' ¢ C*(T"),
Mg, 0 A(s) = T, (A(s)) = @i(5)A(s) = e, (A(s)).

From the commutativity of () we have

M, (Ker(X)) C Ker(\) (% %)

Set E; = supp(y;). Then |E;| < oo and since for s € I' C C*(I"), my,(s) = pi(s)s € Span{s : s € E;}, we
have

My, (C*(T)) C Span{s : s € E;} = Span{s : s € E;} (% % %)

since finite-dimensional subspaces are automatically closed. Note also that since lim; ||my,(s) — s|| =

lim; |@;(s) — 1| =0, for all s € I' and ||m,, || < 1 for all i, we have

lim||my, (a) —a] =0, aeC*(D). (4%)



Assume now that a € Ker(\). By (x x %), my,(a) = > sen, s for suitable complex numbers .
)

Moreover, by (x%), A(m, (a)) = 0. Hence

0=2X\ (Z c@s) = Z D \(s)

sek; seb;

and thus

Z Vg, = (Z cgi))\(s)> Je =0

seE; seE;

which clearly implies that ) =0forallsel (and all ¢ € I). Therefore my, (a) = 0 for all i € I and hence
by (4%), a = 0, i.e., we have proved that Ker(\) = 0 and hence A\: C*(T') — C%(T') is a *-isomorphism.

(6) = (7): The trivial representation 7y gives a character on C*(I'), by universality of C*(T"). If (6) holds,
then C3(T") = C*(T') also has a character.

(7)=(1): Let 7: C{(I") = C be a *-homomorphism. Then 7 is a state on C§(I"). Use Hahn-Banach to
extend it to a state 7 on B(¢?(I")). Note that 7 may not be a *-homomorphism anymore, but C3(T) is
contained in the multiplicative domain of 7 in the sense of Definition 1.14 (1.5.8 [BO]):

A; = {a € BUA()) | #(a*a) = #(a)*#(a), 7(aa") = 7(a)7(a)"}.
Hence, by Proposition 1.13,
F(Asady) = T(\)F(a)F(N\), s, t €T, ac B(L*T))
Consider now ¢>(I") € B(¢3(T)) acting as multiplication operators. Then for s € I', f € £>°(I"),
F(5.£) = FOSNT) = FODFHFOT) = 7(f),

since 7(\s)~! = F(A\;!). Thus we have shown that 7 is an invariant mean on ¢°°(I"). Therefore we need

to check the formula
s.f =XM7L, sel, fer=().
It is enough to check on {&; : t € T'}. Since (s.f)d; = (s.f)(t)d: = f(s~1t)d; and
Aef AT 00 = Ao fAs=16r = Ao fOs=1y = Ao f (s )61, = (s )d,
the formula holds.

We have now proved that (1), (2), ..., (7) are equivalent. To add (8), (9) and (10) we prove (4) < (8),
(3)=(9)=(1) and (10) < (1).

(4) = (8): This is “easy”. Choose a net of unit vectors &; € £2(I") such that
lim ||)\s§z - fng =0, sel.
Then for every finite set £ C T,

<|E|

o

selR
and <ZsEE As&in &i) — ZseE 1= |E|. Thus | ZseE Asl| = |E|.




8)=(4): Let £ C ¢ a fnite set. Let F = FUE™"U{e}, and let § = . en S 1s self-adjoint
(8)=(4): Let E C T be a fini Let F = EUE~'U{e}, and let S >_ger Ag- Then S is self-adjoi
and ||S|| = |F|. Let € > 0 (¢ < 2) be given. There exists a unit vector £ € £2(I") such that

(SEQ| = |F| .
As (S¢,€) € R, we either have (S, &) < —|F| +e¢, or (S, &) > |F| —e. But
(S, = lEIP+ > (A& 21— (F|=1) =2~ |F| > —|F| +¢,
geF\{e}
hence (S¢,€) > |F| — e. Now, for each g € E we have
(S6,8) = (MN&O+ D (&9
heF\{g}

= Re(\& &)+ Y Re(M&€)

heF\{g}
< Re(A&,6) + (IF| = 1).
We deduce that
Re(A€, ) = (56, — (IF| 1) = 1—e¢.
Hence
1Ag€ = EII* = [INGEII* + [I€]7 — 2Re(AgE, &) =2 — 2Re(Ag€,€) < 2-2(1 —¢) = 2e.

Equivalently, [|[A\;& — &|| < V/2¢, for all g € E. By standard arguments, we can now find a net (&;);es of
unit vectors in £2(T") such that ||\,& — & — 0 for all s € T.

(3)=(9): Let (F;);cr be a Folner net (Folner sequences only exist if I' is countable). Let (ep 4)p qer be
the matrix units of B(¢3(I")), i.e.,
) =t
ep,qét — { p 4

0 qg#t.
Let p; denote the projection of £2(I") onto Span{d, | g € F;}. Recall that |F;| < co. Then

piB(*(T))p; = M;p,|(C)

(in the book M)f,|(C) is denoted by Mp,(C)) with matrix units (e, q)p,qer,. Define p;: C5(T') — MF, (C)
by & — p;xp; and ;: Mg, (C) — C5(T') by

—1
q b

1
€pq — @)‘p)‘ p,q € F;.

By Example 3.2 (1.5.13 [BO]), v; is completely positive. Clearly ¢; is unital, and +; is also unital, since
1 _
Yi(l) = Z Yi(epp) = Z W)‘p)‘pl =1

pEF; pEF; v
To see that ||1); o p;(a) — al| = 0 for all a € C5(T), it is enough to check on elements of the form a = A,
s € I'. We have

()
@i()\s) :pi/\spi = Z €p,q

p,qEF;
p=sq



(where the formula (%) can be checked by evaluating on d;, t € T"). Hence

1 - 1 |FZﬂSFZ|
Yiopi(Ag) = —= AT = A, = 2Ty

el o
But |F; A sF;| = |F;| + |sF;| — 2|F; N sF;|, and hence
|F; N sF| 1 1|F; A sFy
| F5] 2 |F
which proves that ||1; o p;(As) — As|| — 0.

— 1,

(1) = (10): 9; and ¢; above are also well-defined u.c.p. maps

We have to check that ¢; o p;(z) — x ultraweakly for all z € L(T"). By Remark 4.4 (2.1.3 [BO)), it suffices
to prove that for all g,h € T,

(Wi 0 @3)(@)dg, 6n) — (@g, Op)-
Let € L(T") and put as = (xd¢, ds), s € I'. Then o € C and for g, h € T,

(@dg,0n) = (wp(g™")de, n) = (p(g™")2de, 0) = (e, p(9)0n) = (20e, Opg—1) = apg

where we have used that A and p are commuting representations of I on £2(T), so L(T") = A(T')” commutes
with p(g) for all g € T'. Therefore

pi(x) = Z (20q,0p)ep,q = Z Opg=1€p,qs
P,qEF; P,qEF;

and hence

1 1
(15 0 i) (z) = 7 D g Ayt = WmesmaSAS,

1

since each s € " can be written as pg~! in exactly |F; N sF;| ways with p, ¢ € F;. Also note that the latter

sum is finite (it has at most |F}|? non-zero elements). We now have

|F; N sF;|
| Eil
|F; 0 (hg ") F|

B | F] o

_|En (kg HE]|

a |Fil

<(w1 © 901')(55)69’ 5h> = Z as<>\85g7 5h>

S

<£U(Sg, §h> — <$5g7 6h>

L and is 0 for all other s.

since (Asdg,05) =1 only if s = hg™
(9) = (1): Assume that C5(T") is nuclear. Let

idC; ()

c;(r)_} cx(I)

o " B oy

10



be a u.c.p. approximate factorization. (The existence of such factorization is ensured by Proposition 2.2.6
[BOJ, since A = C5(T") is unital.) Hence

[¥n © on(a) —al| =0, aeCX(I). (%)
By Arveson’s extension theorem, we can extend ¢, to a u.c.p. map @, on all of B(£?(T")). Put
©, = 0 gt B(T)) = CX(D).

As explained in the proof of Arveson’s theorem (see also Theorem 1.3.7 [BO]), the net ®,, has a point-

ultraweak limit

u.w.

®: B(A(I)) - Cx(T) = L(I)
which by (*) satisfies
®(a) =a, acCy(T). (7.1)
Let 7(T) = (T.,d.), T € L(T'), be the canonical trace on L(T'), and set n: = 70®: B({*(T')) — C. Then
n is a state on B(¢?(T")). Moreover, for all T' € B(¢*(T)) and s € T,

NASTA) = T(R(ATAY)) = T(AR(T) ),

which follows since C5(T") is contained in the multiplicative domain of ®, together with (7.1). By the

trace property of 7 we now have
NASTAD) = T(AL(A®(T))) = 7(2(T)) = n(T)

for all T € B(¢*(T")) and all s € I'. Now let f € £>°(T") considered as a multiplication operator on ¢*(T).
Then we have previously checked that

AfAi=s.f, fet®), seT.

Hence 7n(s.f) = n(As fAE) = n(f), i.e., n restricted to £>°(T") is a left invariant mean, which proves (1).

(10) = (1): The proof of (9)=-(1) can be repeated almost word by word. Actually we get in this case
that ®(a) = a for all a € L(T') so that ® is a conditional expectation of B(¢?(I")) onto L(T). O

11
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Section 4.1: Crossed products

Definition 8.1 (Definition 4.1.1, [BO]). Let A be a C*-algebra, I" be a discrete group and a:: I' — Aut(A)
be an action of I on A, i.e., a is a group homomorphism from I" into the group of *-automorphisms of
A. A C*-algebra equipped with a T-action is called a I'-C*-algebra, and the triple (A, T, «) is called a

C*-dynamical system.

Let A be a I'-C*-algebra with the action of I' on A denoted by a. Our goal is to construct a C*-algebra
A x, T that encodes the I'-action of T on A.

The model we have in mind is that we should have A x, ' := C*(A4, {us}ser) such that
usaul = as(a), usus =ug, a€ A, s, tel. (1)
In the case when A is unital, we want to think of us, s € I, as unitaries implementing the action. Let

C.(IA) := {Zass i ag € A, sum is ﬁnite} ,

sel’
i.e., C.(T, A) is the space of finitely supported functions on I" with values in A, so that if S € C.(T, A),
then by writing a; = S(t) € A for all £ € I' we then write S = ), a;t (where the sum is finite). In the
above model (if 14 € A), then for all s € T", we define

us := 1as € C.(T', A)
so that us(t) = 14 if t = s and us(t) = 0 else.

We now want to make C.(T', A) into a *-algebra (and then complete it with respect to some appropriate
norm to get A X, I'). In the above model, if we want to implement relations (1), then we should have

(1a48)(1at) = 1ast, s,t€T,

and sas™ = ag(a) or (1as)a = ag(a)s for all s € T and a € A. Hence for Y ass, Yo bit € Ce(T, A)

we define
(Z ass> <Z bﬂf) = Z (ass)(bst) = Zasozs(bt)st

sel’ tel s, tel’
(the latter equality following from noting that sb; = as(b;)s) and

<Z ass> = Zs_la: = Zas_l(a:) sl

sel

(noting that s~'a* = a,-1(a?)s~! by the above).

Remark 8.2. Let 1 := 14e € C.(T, A), so that 1(¢t) = 14 if ¢ = e and 1(¢) = 0 otherwise (where e is
the unit of T'). Then 1 is the unit in C.(T', A) with respect to the above multiplication, so C.(T", A) is
now a unital *-algebra. The map a € A — ae € C.(T', A) is an injective *-homomorphism. Further, if
us =148 € C.(I', A), s € T', then we can check that



o wWius=1=uzul, sel,

® UsUt = Ust, S,t € Fa

o usaul = ag(a), s, ac A
Therefore C.(T', A) is the *-algebra generated by A and {us, s € T'} and we have

CQ(F7/D > ZE:QSS:: zz:asus-
sel’ sel’

Definition 8.3. We say that (u,w, H) is a covariant representation of (A,T', ) if u: ' — U(H) is a
unitary representation, w: A — B(H) is a *-representation and they satisfy

usm(a)uy = m(as(a)), sel, ac A

Remark 8.4. Let (u,w, H) be a covariant representation of (A4,T", «). Define

(u x ) <Z ass> = Zw(as)u(s), Zass € C.(T', A).

sel’ sel sel’

Then u x 7 is a *-representation of C.(I'; A). Note that for all x = > ass € C.(T', A) we have

I x @)l = |3 wlaus| < 3 Iras)usll < 3 sl = el )
sel sel’ sel

Conversely, we can show that any non-degenerate *-representation ¢ of C.(T', A) arises in this way.
(Recall that a *-representation ¢: B — B(H) is called non-degenerate if

span(p(B)H) = H. (3)

If B is unital, with unit 15, then (3) holds if and only if ¢(1p) = Iy.) We justify this statement under
the assumption that A is unital, with unit 14.

Thus, let ¢: C.(T'; A) — B(H) be a non-degenerate *-representation, so that ¢(14) = Iy. If we define
m(a) := ¢(a) for a € A C C.(T, A) then 7 is a unital *-representation of A, and if we let ug := p(las) €
U(H) for s € T, then u: s € T' +— uy; € U(H) is a unitary representation of I'. Finally,

usm(a)ug = p(las)p(a)p((las)”) = m(as(a)),
so that (u,m, H) is a covariant representation of (A4,T,a) and ¢ = u X 7.

Definition 8.5 (Definition 4.1.2, [BOJ). The full crossed product (sometimes called the universal crossed
product) of a I-C*-algebra A with T'-action «, denoted by A x, I, is the completion of C.(T", A) with
respect to the norm

[2]lu = sup[[w(z)[l, @€ Ce(T, A). (4)

where the supremum is taken over all (cyclic) *-representations w: C.(I', A) — B(H).

Remark 8.6. We will show that *-representations of C.(I', A) do exist. For this (cf. Remark 9.4) it will
suffice to construct a concrete example of a covariant representation of (A,T', ). Note that in computing
| - || by formula (4), we can restrict ourselves to considering non-degenerate *-representations. Then, by
Remark 9.4, we have

lz|lw < ||lz]|1 < o0, =€ C.(T,A).
Further, the fact that ||-||,, defined by (4) is a seminorm on C,(T', A) follows immediately (as the supremum

over a family of seminorms is a seminorm itself). We will show that || - ||,, is actually a norm on C.(T", A).



Before proving the two assertions above, note the following:

Proposition 8.7 (Universal property, Proposition 4.1.3, [BO)). For every covariant representation (u,w, H)
of a T'-C*-algebra A, there is a *-homomorphism o: A X, ' — B(H) such that

o (Z ass> = Zﬂ'(as)u(s), Zass e C.(T, A).
sel’ sel’ sel’
We now construct a concrete example of a covariant representation of (A4, T, ). Suppose that A C B(H)
is a faithful representation of A. Define a new representation 7: A — B(H ® ¢?(T")) by

7(@)(0® 8,) = (ay1(a)0) ® 6y, a€A, geT, veH, (5)
where {d,} ger is the canonical orthonormal basis in £2(I"). (Under the identification Dyer H = H®2(T),
we have taken the direct sum representation m(a) = €, cr g-1(a) € B(B er H).)

Now let A\: ' — B(£2(T)) be the left regular representation of T, i.e., A\;0; = &4 for all t € I'. We claim
that (1®@ A\, m, H® ¢*(T")) is a covariant representation of A on H ® £2(T"). Indeed, this follows from the
computations

(1@ A)m(a)(1@AS) (v @ dg) = (1@ As)m(a)(v @ bs-14)
= (1® A)(ag-15(a)v @ d5-14)
ag-15(a)v ® dy
m(as(a))(v @ d,),

which show that
(1@ A)m(a)(1 @A) =7m(as(a)), seT, ac€A,
hence proving the claim. By Remark 9.4, let (1 ® A) X 7 be the associated *-representation of C.(T', A).

This is called a left reqular representation.

Example 8.8. Let I' = Z and let A be a C*-algebra with a Z-action a: Z — Aut(A). Suppose that
A C B(H) is faithfully represented. Noting that H ®¢*(Z) = €D,,c, H, we construct 7: A — B(H ®@(*(Z)
by (5), i.e.,

is an infinite diagonal matrix with 7(a)og = a. Then for all n € Z, we have u,, = U™ € U(H ® (*(Z)),
where the unitary U is the shift

U= 0 1 :1®>\1,

soU(1®6,) =1® 6,1 for n € Z. One can check that u,m(a)u) = m(a,(a)) for all n € Z and a € A.



Let’s go back to the general case and look at the regular representation
(1®\) xm: Cu(T', A) — B(H ® ¢*(T))

that we constructed.

Lemma 8.9. (1® \) x 7 is injective.

Proof. Let ), rast € C.(I', A). For any v € H and g € I', we have

(1®N) (Zaﬁ) (v®dy) Zﬂ'(%)(l@)\t)(v@ég)

tel’ tel

=3 n(an)(v ® 6)

tel’

= Zag_lt_l(at)v ® 5tg~

tel

Now, for every g € I, let P, € B(£*(T")) be the projection onto Cd,. Then for all h € I' we have

(1@P)((1@N) x (Z att> (1® Py) = ag-1(agh-1) @ PyAgn-1 Pp. (6)
tel
Note now that if we set ey := PyAgp-1Pp, g,h € T', then {egn}gner is a family of matrix units in

B(¢*(I)), since €g.h€st = Oh s€q 1, €y n = €h,g and

26979 = 152(1*).

gel

In particular, if ((1® A) x 7)(3,cp ast) = 0, then (with g = e and h = s~*, we get

0=(1PFP)((1®A) xm) (Z att> (1®Py-1) =as @ P AsPy-1.

tel

Hence as =0 for all s € T, so > a;t = 0 and the claim is proved. O

sel’

Corollary 8.10. The universal norm || - || defined by (4) is a norm on C.(T', A).

Definition 8.11 (Definition 4.1.4, [BO]). The reduced crossed product of (A,T',c), denoted by A x4, T
is the norm closure of the image of a regular representation C.(I", A) — B(H).

We will abuse notation and denote an element x € Co(I', A) € A xo, I'by 2 =3 1 asAs.

Proposition 8.12 (Proposition 4.1.5, [BO]). The reduced crossed product A x4, T' does not depend on
the choice of faithful representation A C B(H).

We postpone for a moment the proof of Proposition 9.12 and look instead at the following:

Proposition 8.13 (Proposition 4.1.9, [BO]). The map E: C.(T'; A) — A given by

E (Z as)\5> = G,
sel’



extends to a faithful conditional expectation from A X, ' onto A. In particular,

Z A

sel

<
max flas || <

AXg, T

for all Y- crashs € C(T, A).

Proof. By taking g = h = e in (6), we get

(1®Pe)( (Z&ﬂf) ®P —ae®Pe, ZattEC’(F A)

ter ter
Hence

E()9P.=(10P)((1@\) xm)(@)(1®P.,), =zeC(T,A).
Therefore E is a contraction on C.(I', A) and hence it can be extended to a contraction E: A x, ' — A.
It is clearly a projection onto A, so by Tomiyama’s theorem, E is a conditional expectation of A x4, I’
onto A.

It remains to show that E is faithful. For this, we’ll give a different proof than the one in the book. By

taking g = h in (6), we get

1®P)(1®A) xm (Zaﬂf) Py) = ay-1(ae) ® Py,

tel
so we have
(1I@P)(1@A) x7m)(x)(1® Py) =ay-1(E(x)) ® Py, xeC('A). (7)

Now we need the following result.

Lemma 8.14. Suppose that T € B(K);+ and T # 0 (where K is a Hilbert space) and that there exist
projections E,, € B(K) such that ), E, = Ix. Then there exists n such that E, TE, # 0.

Proof. Choose x € K such that (T'/22,x) # 0 and set x,, := E,(z) for all n. Then z = 3", x,, where
the sum is norm-convergent, and so

0+#( T1/2xaz ZZ T1/2xn,xm

Hence there are n,m such that (T'Y/2z,,, x,,) # 0, so we must have T"/?z,, # 0. Thus
(E.TE z,x) = (Txy, xp) = |\T1/2acn||2 #£0,

proving the claim. O

We are now ready to prove faithfulness of E. We show that if € A%, I, > 0,  # 0, then E(z) # 0.
Suppose by contradiction that E(z) = 0. Then by (7) we get
(1@ P)(1@A) xm)(x)(1® Py) = ag-1(E(z)) @ Py =0, gel.

By Lemma 9.14, we deduce that ((1 ® A) x 7)(z) = 0. But we have proved that (1 ® A) x 7 is injective.
Hence z = 0, a contradiction! Finally, note that for all s € I' we have a; = E(2A}), where z = ), | ast.

This implies the desired inequality, so the proof is complete. O



Remark 8.15. The map F above extends also to a conditional expectation of A x, I" onto A, but in
general this is not faithful (unless A X, I' = A %, I' which happens, for example, if I' is amenable — see
Theorem 4.2.6 — or, more generally, if I" acts amenably on A — see Theorem 4.3.4). These considerations
follow from the existence of a contractive surjection j: Axa T — A x, I (since C.(T', A) is dense in both
AxgTand Axg,Tand ||« ||u > ||« |ar), so that Eoj: A x, ' = A is the desired map. If kerj # 0,

then ker(E o j) # 0 (as ker j C ker(E o j)), but ker(E o j) is an ideal in A X, I" and every ideal contains

positive elements. In this case, F o j is not faithful.

Proof of Proposition 9.12. We start with some calculations. For a finite set F' C T, let Pr = P € B((*(T))
be the canonical projection onto span{d, : g € F}. Let (epq)pqer be the canonical matrix units in
PB({*(T))P = Mp(C) (note that the isomorphism is an isometry). Now let A C B(H) be faithfully
represented and let 7: A — B(H ® ¢*(T")) be a regular representation. Then for all a € A, we have

(1® P)r(a) = (1@ P)m( = ag1(a) ®eqq,
qEF

using that 7(a) is a diagonal matrix so that it commutes with 1 ® P. Hence for all s € T,

1e@P)r(a) (1@ Xs)(1®@P)=[(1® P)r(a)] [(1® P)(1® X)(1® P)]

= | agi(a) @eqq| (L& PAP)
9 F ]
= Z ag-1(a) @ eqq Z 1®eps-1p
_qGF ] pEFNsF
= Z Oép—l(a) D eps—1p € A® Mp(C).
pEFNsF
Hence for all 2 = Y asAs € Co(T, A) € B(H @ (*(T')), we have
1@ P)m@)(1@P)=Y > api(a)@ey1, € A® Mp(C). (9)
sel' pe FNsF

But A® Mp(C) 2 Mp(A) C Mp(B(H)), where the inclusion is a *-homomorphism and hence isometric.
This means that the norm of a matrix in Mp(A) only depends on the norms of its entries (which are
elements of A), and not on the specific embedding of A into B(H). By (9), ||[(1 ® P)n(z)(1 ® P)|| only

depends on the norm on A, and since
[l (x)]| = sup{||(1 ® Pr)7(z)(1 ® Pp)||: F CT finite},

the proof is complete. O
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Section 5.1: Exact groups
Definition 10.1 (Definition 5.1.1, [BOJ). A discrete group T is ezact if C5(T') is exact.

Theorem 10.2 (Guentner, Higson and Weinberger, 2005, Theorem 5.1.2, [BO]). Let F be a field. Then
any subgroup T of GL(n, F) is exact (as a discrete group).

Proof. See reference [73], [BO]. O

Corollary 10.3. GL(n,Z), SL(n,Z), n > 2, are all exact groups.
Proof. They are subgroups of GL(n, Q). O

Remark 10.4. Using Proposition 2.5.9, [BO] and the fact that exactness passes to subalgebras (cf.
Exercise 2.3.2, [BO]), we deduce that subgroups of exact groups are exact.

Definition 10.5.
(1) Let E C T be a finite subset. The tube of width E is the set
Tube(E) = {(s,t) €' x T : st~ ' € E}.
(2) The uniform Roe algebra C(T) (named after John Roe) is the C*-subalgebra of B(¢*(T")) generated
by C5(T") and ¢>°(T").
Proposition 10.6 (Proposition 5.1.3, [BO]). Let a: T' — Aut(¢>°(T")) be the left translation action
as(f)=s.f, foralls €T and f € £>°(T'). Then
CrI) 2 (1) g, T
Proof. By Definition 4.1.4 and Proposition 4.1.5 [BO], we can realize the reduced crossed product £>°(I") x4,
I as the C*-subalgebra of B(¢?(I') ® ¢2(T") generated by {n(f), 1® \s : f € (), s € T'}, where
1w @) =1 (flv@d, =t o, fel>T),ve*),tel.
(As usual, we consider g € £>°(I") as a multiplication operator on ¢2(I").)
Since (z,y) — (x,yz) is a bijection of I" x T" onto itself (Check that!), we can define a unitary operator
Uon 2(T)®*(T) =T &T) by
U(dy ®0y) =0z @y, x,y€T.
For f € £>°(T') and s,t € T" we now have
Un(f)(8s ©6r) = Ula; ' (f)ds ©8) = U(f(ts)ds @ 0;) = f(ts)ds ® dus

=05 ® f(ts)ds

=05 ® fous

= (1@ f)(0s ©d1s)

=1 ©fU(0s ®d1).



Hence Un(f) = (1 ® f)U, which implies
Urn(fiU"=1® f. (1)
Moreover, for s,t,u € T,
U(1® Xs)(0y ®@6t) = U0y @ 0st) = 0y @ Ity = (1 @ X)) (0 ® 01) = (1 @ Ag)U (00 @ ).
Hence U commutes with 1 ® A;, and therefore,
Ul@A)U* =11 As. (2)

By (1) and (2), the map ¢:  +— UzU™* is a *-isomorphism of £°(I") x4, I" onto 1 ® C7(I") which, in turn,
is *-isomorphic to C}(I"). O

Corollary 10.7 (to the proof of Proposition 10.6). There is a (unique) *-isomorphism p of £°(T") x4, T
onto C(T) such that

p(r(f) =f, fe=),
p(l®A) =Xs, sel.
Definition 10.8 (Definition 5.1.4, [BO]). A bounded function k: T' x I' = C is called a positive definite
kernel if for every finite subset F' C I"
k(s D)lseer € Mp(C)y. (3)
Note that condition (3) implies that
(i) k(s,s) >0forall s €T,

(i) k(t,s) = k(s,t) for all s,t € I' and
(iii) |k(s,t)]* < k(s,s)k(t,t) for all s,t €T,

where the last condition follows from the fact that applying (3) to F' = {s,t} in the case s # t, we get

det k(s,s) k(s,t) >0
k(t,s) k(t,t)
Hence, if k: T' x I' — C satisfies (3) and sup,cp k(s, s) < oo, then k is a bounded function on I' x T'.

Note for example that if T € B(¢%(T)), T > 0, then the kernel associated to T
kr(s,t) = (T0,0s), s,tel
is a positive definite kernel.
Now set

Ao(T') = span (U £°°(F)>\S> : (4)

sel
Since A\ fA;1 = s.f, for all f € £°(T), s € I, Ag(T) is a dense *-subalgebra of C(T") and Ay(T) is the
smallest *-algebra generated by ¢*°(G) U {\; : s €T}

Remark 10.9 (Remark 5.1.5, [BO]).

(a) ¥ T € Ag(T")4, then kr is a positive definite kernel with support in some Tube(F'), where F' C T is
finite.



(b) Conversely, if k is a positive definite kernel with support in some Tube(F'), where F' C I finite, then
k = kp for a unique operator T' € Ag(T") ..

Proof. (a) Let f € £>°(T"), uw € I'. Then for s,t €T,

flut), st™t=u

kpa,(s:t) = (fAub, 05) = f(ut)(dut, 0s) = { 0 st~ £ .

By (4), every T' € Ao(I') is of the form T' = > _p fulu, where F' C T is finite and f, € ¢£>°(I'), for all
u € F. Hence, by the above computation, the kernel

kr =Y kfoa,
ueF

has support in {(s,t) € T x ' : st~! € F} = Tube(F), and if T € A(')4, then kr is also a positive
definite kernel.

(b) Let k be a (bounded) positive definite kernel on I' x I with supp(k) C Tube(F), for a finite set FF C T.
For u € F, set

fulx) =k(z,u"'z), wel, zeT.
Then f, € ¢>(T"), for all u € F' and

fulut), st™t=u

kfu)\u(s,t) = {

0, st~ £ .
) k(sit), stTt=u
B 0, st™! # .

Set T =3 ,cp furu € Ao(I'). The above computation shows that k and kr coincide on Tube(F'), and
since k and kr vanish outside Tube(F), we have k = kp. Moreover, since k is positive definite, T is
positive, i.e., T € Ag(T")4+, which proves (b). O

Theorem 10.10 (Theorem 5.1.6, [BO]). Let I" be a discrete group. Then the following are equivalent:

(1) T is exact.
(2) For every finite set E C T and € > 0, there exists a positive definite kernel k with supp(k) C Tube(F)
for some finite set F, such that, moreover,

|k(s,t) — 1| <e, (s,t) € Tube(E).

(3) For every finite set E C T and e > 0, there exists a finite set F C T and ¢: T' — £3(T') such that
o |lstlla=1 forallit €T,
e supp(s;) C Fit for allt €T and
o |lss —stll2 < € for all (s,t) € Tube(E).
(4) For every finite set E C T and € > 0, there exists a finite set F' C I' and p: I' — Prob(T") such that
o supp(ut) C Ft for allt €T and
o |lpus — pellr < e for all (s,t) € Tube(E).
(5) CXT) is nuclear.

Before proving the theorem, let’s look at the following interesting application of it:



Example 10.11 (= Proposition 5.1.8, [BO). , with a different proof] The free groups (F,)o<n<oo are

exact.

Proof. Since F,, (3 < n < c0) can be embedded in Fy, by Remark 10.4 it is enough to show that Fy is
exact. Let a,b be the generators of Fy and let |x| be the length of a reduced word = € Fa. Define

dp(s,t) = |st™Y, s,t €Ty,
Then d, is a right invariant metric on Fo:
dr(su,tu) = d,(s,t), s,t,u€Fy.

The (right) Cayley graph G of Fy is the graph obtained by letting Fo be the set of vertices and connecting
s,t € Fy with an edge if and only if d,.(s,t) = 1.

FIGURE 1. (Right) Cayley graph G of Fy

The Cayley graph of F5 is a homogeneous tree of degree 4. Consider the infinite path P(e) = {e, a,a?,a?,...}.
For every x € GG, we can construct an infinite path P(x) that eventually merges into P(e) by setting

P(x) = {z,7(2),7*(x),.. .},
where v(e) = a and for z # e with reduced word z = s -+ s,,, 5; € {a,a™1,b,b7'} we define
ar ifsg=8y=---=5,=a
S9---8, Otherwise.
For instance,
P(aba) = {aba,ba,a,a® da®,...}.
Note that z,v(z),v2(z), ... is a list of distinct elements from Fy and d,.(v*(z), v**1(x)) = 1, for all k > 0.
Also, P(z) N P(e) D {a’,a’T, ...}, for some j > 0, and hence
P(m)ﬂP(y);é(ZL $,y€F2-

Fix now z,y € Fy and let k € Ny = N U {0} be the smallest number such that v*(z) € P(y). Then
v*(z) = v*(y), for some £ € Ny, and hence

Y (z) =+ (y), i>0,



while

FIGURE 2. P(z) and P(y)

Since the Cayley graph is a tree, there is a unique shortest path from z to y, and this path has length

d,(z,y). Hence from Figure 2, we have
dy(,y) =+
We will prove that Fo satisfies condition (4) in Theorem 10.10. Fix n € N. For z € Fy, define

Mgn) = —(0:+ 0y(s) + - + 8yu-1(s)) € Prob(F2).

1
n
Since d,(z,77(2)) = j, we have Supp(,ugn)) C F,z where F,, = {s € F5 : |s| < n}. Let E C [F3 be a finite

set and let € > 0. Set m = max{|s| : s € E}. Then
Tube(E) C {(s,t) € Fo x Fa : d.(s,t) < m}.
Let now (z,y) € Tube(E) and define k, ¢ (depending on the pair (z,y)) as above. Then for all n > m,
E+l=d.(z,y) <m < n.

Hence, using Figure 2, it is not hard to see that

[l — (k+0+k—1]) <

1
1=~ =
n n
Thus for n > (2m)/e,

) — ,Ug(,n)Hl <e, (z,y) € Tube(E),

which shows that Fy satisfies condition (4) in Theorem 10.10. Therefore Fy is exact. O

The proof of (1) = (2) in Theorem 10.10 uses the following:

Exercise 10.12 (Exercise 3.9.5, [BO], slightly reformulated). Let A C B(H) be an exact unital C*-
algebra and let (P;);e; be an increasing net of projections in B(H), such that P; — 1 strongly. Let E C A
be a finite set and let € > 0. Then there exists P € {P; : i € I} and a u.c.p. map §: PB(H)P — B(H)
such that

|0(PaP) —al| <e, a€kE.



Solution of exercise. By the definition of exact C*-algebras and Exercise 2.1.6, [BO], we know that the
inclusion map i: A — B(H) is nuclear. Hence with £ C A finite and ¢ > 0, there exists k € N,
¢: A — My(C) and ¢: My(C) — B(H) such that ¢ and ¢ are u.c.p. maps and

(4 0 9)(a) - al < g, ackE.

(We have used Proposition 4.11 (Proposition 2.2.6., [BO]) therein.)

Use now Arveson’s extension theorem (Theorem 3.8 (Theorem 1.6.1, [BOJ)) to extend ¢ to a u.c.p. map
¢: B(H) — My(C). By Corollary 1.6.3, [BO], there exists a net (py)aea of ultraweakly continuous u.c.p.
maps from B(H) to M(C) that converges point-norm to @. So there exists Ag € A such that for A > A,

(o px)(a) — (bo@)(a)] < =, acE.

3
Since @(a) = ¢(a), for a € E, we deduce for all A > \q that
(¥ 0 pr)(a) —al < % a€E.
Set ¢ = @x,: B(H) = M (C). Then
IWo) @) —al <%, ack.

Since ¢’ is ultraweakly continuous and lim; P; = Ig(sy SOT, we conclude that ¢'(P;aP;) — ¢'(a), for all
a € B(H). But the ultraweak topology coincides with the norm topology on M (C) (Why?), hence

lim [|¢'(PaP;) — ¢'(a)l| = 0, a € B(H).
In particular, there exists ¢ € I such that with P = P;, we have
l¢'(PaP) = ¢'(@) < 5, acE.
So altogether we deduce (using |[¢]] < 1) that for all a € E,

14 0 ") (PaP) —all < |(¥ 0 ¢")(PaP) = (¥ o ¢')(a)|| + (¥ 0 ¢')(a) — all

< = + x_ €
33 7
Set now 6 = (v 0 ¢')| pp(ryp- Then the desired conclusion holds. O

Proof of Theorem 10.10. (1) = (2): Assume that I is exact, i.e., that C5(T") is exact. Let E C I be finite
and € > 0 be given. It follows from Exercise 10.12 that there exists a finite set Fy C I' such that with
P being the orthogonal projection of £2(T") onto ¢?(Fp) there is a u.c.p. map ¢: PB(¢*(T))P — B({*(T)
such that

[H(PA(s)P) = Als)|| <&, s €E.
Set now 6 = v o ¢, where ¢(z) = PzP, x € C(T"). Then

10(A(s)) = Als)l| <&, s €E.

Define a kernel k: I' x I' — C by

k(s,t) = (0(\(st™1))d:,8,), s,tel.



For all s1,...,s, €T, ay,...,a, € C, we have
Z k(s;, sj)ao = Z(Q(/\(sisj_l))ajésj,aiési>
,J ]
041531 041551

>0in M, (C:(I)) | nds, apds,

This shows that k is positive definite.

Note further that ¢(A(s)) = PA(s)P is zero precisely when 0 = (A(5)d¢,8y) = (dst,04), i.€., when
st #uor s #ut™! for t,u € Fy. Hence p(\(s)) = 0 if and only if s ¢ Fy - F; ' (which is a finite set).
Then 6(\(s)) = 0 when s ¢ Fy - F; " and hence k(s,t) = 0 when (s,t) ¢ Tube(Fy - F; '). Moreover if
st~1 € Tube(E), then

[0(A(st™h)) — A(st™H)|| < e.
Hence
|k(s,t) — (\(st™ )3, 04) | < e,
(05,05)=1
ie. |k(s,t) — 1| < & for (s,t) € Tube(E). Hence (1) = (2) holds (with F = Fy - Fy ).
(2) = (3): Let E C I be finite and € > 0 be given. Let 0 < e* < 1 (to be specified later). By (2) there
exists k: I' x I' = C positive definite kernel and a finite set F* C I" such that

|k(s,t) — 1| <&, (s,t) € Tube(E™) (i)
where E* = E U {e} and
k(s,t) =0, (s,t) ¢ Tube(F™). (ii)

By Remark 10.9, k(s,t) = (ady, ds), s,t € I, for an element a € Ag(T")y+ C C(T') 4. Since A(T") is dense
in C(T"), we can find b,, € Ay(T") such that b, — a'/? in norm and thus b%b, — a in norm. Hence there
exists b € Ag(T') such that

166 — a]| < e*. (iii)
By (i) we have |k(t,t) — 1| < &* for all t € T'. Hence by (iii),
16612 = 1] < [IB3I2 = k(t,8)] + k(t,8) — 1]
={((b*b—a)d, o) + |k(t,t) — 1] < 2e™.
Thus
1—2e* < ||boe||? < 1+ 2¢*. (iv)
Since 0 < e* < % we have bd; # 0 for all t € I'. For ¢t € I' we put

St = boy
_ 1 (v)
{ - ||b6t\|b5t'

L

Note that ||s|| =1 for ¢ € T'. Moreover for (s,t) € Tube(F)

[(G,Ss) — 1| = [(b"bdy, 65) — 1| < [{ady, 6¢) — 1| + " = |k(t,t) — 1| + €% < 2e™.



Hence Re(G;,5) > 1 — 2¢*, so by (iv),
S 1—2¢e* S 1—2¢e*
166 [[[1bds ]| ~ 1+ 2e*

Re(st, Ss)

Therefore for all (s,t) € Tube(FE),
1—2e* 4e*

- < de*,
1+2 1420 0 °

llss = <ell® = llsslI” + llsell* — 2Re(st, ) <2 —2-

Thus, setting £* = min{%, %}, we have 0 < &* < % as required and

lss — st||? < 4e* < €2, (s,t) € Tube(E).
Since b € Ao(I") there exists a finite set F' C I and elements (bs)ser in £°°(T"), such that b =3 5 bsAs.
Then for t,u €T,

Gy 0u) = (B0, 6u) = Y ba(s1)(du10u) = 0

sEF
if u ¢ Ft. Hence

supp(s;) = supp(G) C F't
which shows (3).

(3)=(4): Let E, ¢, F and ¢ be as in (3) and set

me(p) = la(p))?, tperl.

Then u; € Prob(T'), for all ¢t € T, and

supp(p¢) = supp(s;) C F't.
Moreover
s — el = ([6s| = st (Iss| + [st]) < lss — sellss| + [ss — stllse]-

Hence, by Holder’s inequality,

s — pells < llss = sell2llssll2 + llss — sell2llsellz = 2[|ss — <ilf2-

Thus for (s,t) € Tube(E), ||us — pt]| < 2¢. Since & > 0 was arbitrary, we have proved (4).

(4) = (5): The proof of this implication in Brown-Ozawa relies on Theorem 4.4.3, [BO]. Below is a self-

contained proof based on Section 4.1 only. (The construction of the map ¢’ below is similar to the proof
of Lemma 4.3.3, [BO].) We will prove (4) = (3) = (5):

(4)=(3): Let E, &, F and u be as in (3). Put

G(p) = \//TP), t,pel.

Then ||st||]2 =1 for all t € T and
supp(st) = supp(ut) C F't.
Moreover, for s,t € T,
1/2 1/2
‘2 / /2 _ M;/Q

1/2
It — 62 = g% — ul/?? < | " + 2| = e — pol.

Hence ||s; — ssl|3 < s — psl|. Therefore ||s; — cslla < €'/2 for all (s,t) € Tube(E). Since ¢ > 0 was
arbitrary, we have proved (3).



(3) = (5): Since ¢>°(T") is an abelian C*-algebra, it is nuclear (by Proposition 2.4.2, [BO]), and hence
M,,(£>(T")) is also nuclear, for all n € N (cf. Corollary 2.4.4, [BOJ). Thus if we can show that the identity
operator C*(T") has an approximate factorization through M, (¢>°(T),

ey (r)

Ca() Ca() (&)

My, (£(T))

with u.c.p. maps ¢; and 1; such that
1(¥io@i)(a) —al| =0, aeCyI),
then C}(T') is nuclear by Exercise 2.3.11, [BO].

Lemma 10.13. Let F be a finite subset of I'. Then there is a unique u.c.p. map ¢: C*(T') = Mp(¢>=(T")) =
>°(T) ® Mp(C) such that for all a € £°(T') and s € T,

plads) = Y a,'(a) @ey

pEFNsF

where (epq)p.qer are the matriz units of Mp(C).
Proof. Let p: £°(T") Xg, I' = C(T') be the *-isomorphism from the prof of Proposition 10.6. Then for
a€l®T)and seT,

p~HaXs) = m(a) (1@ Xy).
Let P € B(¢*(T)) be the projection of ¢2(T') onto ¢*(F). Since

m(a) = Za;l(a) ® €qq;

qel’

we have (as in the proof of Proposition 4.1.5, [BO]) that

(1@ P)r(a)(1® X)(1® P) = Z oyt (a) ®epy | (1® PAP)

pel
_ -1
= E Qa, (a) @ epp E : l®eps-1p
pEF peFNsF
= E azl(a)®e, 1
P p,s~1p
pEF

Hence putting
p(2) =1 @ Py ()(1eP), =zeCyD),
we get a u.c.p. map satisfying

30(0)‘5) = Z O‘;I(a) ®ep,s*1p

peEFNsF
for a € £°(T") and s € ' and the range of ¢ is contained in Mp(£>°(T)). O



Lemma 10.14. Let F' C T be a finite set and let (T'(p))pecr be elements in £>°(I") such that

> T()T(p)* =1.

peEF

Then the map ¢: Mp(£>(T")) — C:(T") defined by
Y(a® epg) = T(p)Apar;T(q)"
is a u.c.p. map satisfying

(¥ 0 ) (aXs) = aXs|l < llall || Y T(p)as(T(s 'p)*) = 1||, a€l>(I),seT,
pEF

Proof. We have

v{d)=v (Z 1® epp) = Z T(p)T(p) =1

pPEF pEF

by the assumptions and 1) is completely positive because for [apq]p,qer in Mp(£>°(T)) and F = {p1, ...

we have

Y([apg]) =2 Z (pg @ €pq

p,qEF

(T(p0)Ap)*
= [To0N, TN [0, -
(T(pn)Ap,)*

We next compute

(Y op)(ars) =9 ( Z a;l(a) ® ep,s_1p>

= Y TmNoa, (@ AT (s p)”

peEFNsF

= > T()a\T(s'p)*

peEFNsF

= > T(paas(T(s"'p)")As

peFNsF

= S Ty (T(s p) s,

peFNsF

where in the last step we have used that ¢>°(T") is abelian. Hence

(o @)(ars) —aX| < || D TEaT(s™p)*| laks]
peFNsF

which proves Lemma 10.14.

10
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End of proof of (3)=(5): Since C}(T") is the norm closure of

Ap(T") = span (U £ (F)/\S>

sel’
it is clear that we can obtain an approximate factorization of idc=(r) of the form (X) on page 9, provided

we can prove the following claim:

Claim. Assuming (3), then for every finite set £ C I" and every € > 0 there exists a finite set F' C I' and
(T(p))per in £2°(T') such that

(a) Xper T(P)T(p)* =1 and

(b) HZpeFﬂsF T(p)as(T(s~1p)*) — 1” <eforall s€ F.

Proof of claim. Let E C T be a finite set and let € > 0. By (3), there exists ¢: I' — ¢*(T") and a finite set
F C T such that

o |sta=1forallt e,

e supp(s;) C Fit for all t € T and

o |lss —ill2 < § for all (s,t) € Tube(E).
Define T'(p) € £>°(T') for all p € " by

T(p)(x) = s.(p~tz), x€Tl.
Since supp(s;) C Fz, we can check that T'(p) =0 for all p € T\ F. Therefore, for all z € T,

Y TETE) | (@)=Y ITE)F@) =) lub@ )P = |«l} =1

peF pel pel

Hence (a) in the claim holds. For all z € T and s € E,

Y T)as(T(s'p)) | () =Y T(pw)as(T(s1p))(x)

pEFNSsF pel

=Y T(p)(@)T(s~1p)(s 1a)

pel’

= Z§r(p_1x)gs_1l, ((3_110)_15—135)

pel’
= G 2)G1,(p7a)
pel’

= <§zv<s—1a:>'

Hence for x € " and s € E,

Y TEas(T(s™'p)") = 1| (@)] = [{ses So-12) = 1

peFNsEF
= |<§za§s*1x - ga:>|
= llszll2llsz = Ss—1zll2
e

< =
2

11



because (z,s~1x) € Tube(E) for all s € E. Hence (b) in the claim also holds. O

Altogether, we have shown that idc: (r) has an approximate (point-norm) u.c.p. factorization through the
nuclear C*-algebras M,,(¢>°(T")) (n € N) and hence C(T") is nuclear, completing the proof of (3) = (5).

(5) = (1): Clearly C5(I") C C(T"). Hence
Cy(T) nuclear = C(T") exact = C5(T') exact,

since C*-subalgebras of exact C*-algebras are again exact. g

12



Lecture 11, GOADyn
October 14, 2021

Section 12.1: Kazhdan’s property (T)

Introduction to (relative) property (T)

Let T" be a discrete group and let w: I' — U(H) be a unitary representation.

Definition 11.1 (Definition 12.1.1, [BO]).
e A vector £ € H is called I'-invariant if n(s)§ =€ for all s € .
o A net (§)ier of unit vectors in H is called almost T-invariant if |7(s)& — & — 0 for all s € T

e If E CTisasetand k > 0, we say that a nonzero vector £ € H is (E, k)-invariant if
sup || ()€ =&l < KllE]-
sek

Definition 11.2 (Definition 12.1.2, [BO]). Let A C T be a subgroup.
e We say that the inclusion A C T has relative property (T) if any unitary representation (7, H) of
I which has almost I'-invariant vectors, has a nonzero A-invariant vector.
e We say that T' has property (T) if the identity inclusion I' C T has relative property (T).
e A pair (E, k) where E C T and k > 0 is called a Kazhdan pair for the inclusion A C T (or, for T,
if A =T) if any unitary representation (7, H) of I" which has a nonzero (F, k)-invariant vector,

has a nonzero A-invariant vector.
The following two propositions are reformulations of Proposition 6.4.5, [BO].

Proposition 11.3. Let I' be a discrete group. Then the following are equivalent:
(1) T has property (T).
(2) There exists a Kazhdan pair (F, k) for T with F C T finite and k > 0.

Proof. (1) =-(2): We show —(2) = —(1). Suppose that (2) does not hold. Then for all finite sets F C T’
and £ > 0 there exists a unitary representation (7, H) without a nonzero I'-invariant vector, but such that
there exists a unit vector £ € H with ||7(t)§ —&|| < e for all t € F. Let

I ={(F,e) : F CT is a finite set, £ > 0}.

If (F1,e1), (Fa,e2) € I, we say that (Fy,e1) < (Fa,eq) if F; C Fy and €9 < &1. Then (I, X) is a directed
set. By —(2), then for all i = (F},¢;) € I, there exists a unitary representation (r;, H;) without a nonzero

I-invariant vector such that there exists a unit vector §; € H; satisfying
Imi(t)& — &ll <ei, e R

Set m:= @,;c;mi: ' = B(H), where H = @,.; H;. Now, viewing H; C H, we see that § € H for all
i € I and that for all t € T, ||7(¥)& — &I — 0, ie., (&)ier is a net of almost I'-invariant unit vectors.
However, we can show that 7 does not have nonzero I'-invariant vectors, so I is not property (T), so =(1)
holds. Indeed, assume by contradiction that there exists a I'-invariant £ € H, £ # 0. Let P;: H — H;,
1 € I, be the orthogonal projection. Note that 7(¢t)P; = Pyw(t) for all t € T" and ¢ € I. Then

Wz(t)Pz£:Pl7T(t)§:PZ£7 iGI, tGF,



since ¢ is I'-invariant. This shows that for all ¢ € I, P;¢ is I-invariant for 7;. But m; does not have

nonzero I-invariant vectors, and hence P;§ = 0 for all i € I. Since € =Y. _; P;¢, we deduce that £ =0, a

iel
contradiction. This proves —(1).

(2)=(1): Suppose that (2) holds and that (&;);er is a net of almost I'-invariant vectors for a given
unitary representation 7: I' — B(H), i.e., |7(t)& — & — 0 for all t € T'. Then for all ¢ € I there exists
iy € I such that |7 ()& — &|| < k for all 4 > i;. Since I is a directed set and F is finite, there exists
i9 = io(F) € I such that ig = i; for all t € F. Let {o = &;,. Then ||m(t)o —&ol| < k for all ¢t € F, i.e., & is
(F, k)-invariant. Since (F, k) is a Kazhdan pair for T, it follows that 7 has a nonzero I'-invariant vector,
and hence (1) holds. O

Proposition 11.4. Suppose that (E,k) is a Kazhdan pair for T, and that 7: T' — U(H) is a unitary
representation of I' with the property that there exists £ € H, £ # 0 such that

() =¢ tekE.
Then w(t)€ =& for allt € T, i.e., £ is T-invariant for .

Proof. Set Hy = {all T-invariant vectors in H} and let K = Hy-. Note that both Hy and K are invariant
under 7, ie., 7(t)Hy C Hp and 7n(¢t)K C K for allt € I'. Let m; := w|g: ' = B(K). Then m has no
nonzero I'-invariant vectors. Hence for all n € K there exists t € E such that
1 (t)n —nll = Elln| (%)
Now write (uniquely) £ = &y + 7 for some &y € Hy, n € K. Then for all ¢t € E,
E=m(t)§ =m(t)so +m(t)n =& +7(t)n,
since & € Hy. Hence n = w(t)n for all t € E. By (%), it follows that n = 0. Hence £ = & € Hy, i.e., £ is

T-invariant for 7. O

Next we prove the following two facts: A group with Kazhdan’s property (T) is finitely generated (see

Corollary 6.4.7, [BO]) — therefore it is countable — and it has finite abelianization.

Lemma 11.5. Let T be a discrete group. If there exists k > 0 and a subset E C T' such that (E,k) is a
Kazhdan pair for ', then E is a generating set for T.

Combining this with Proposition 11.3, we deduce that if T has property (T), then T is finitely generated,

and hence it is countable!

Proof. Let (E, k) be a Kazhdan pair for I'. We must show that F is a generating set for T, i.e., if Iy is the
subgroup generated by E in T, then 'y = I'. Consider I'/Tg = {tI'g : t € '} and let 7: I' — B(¢*(T'/T'))
be defined by

7(t)dsry = Otsry, T, s €T
Let £ = 6p, € (?(I'/Ty). Note that for all t € E, 7(t)¢ = 7(t)dr, = dir, = or, = &, since t € E C T'y. By
Proposition 11.4, it follows that 7(¢)§ = £ for all ¢ € T'g. This implies that tT'yg = I'g for all t € T, i.e.,
Ty =T, as wanted. O



Lemma 11.6. Let T' be a discrete group, and let AT (i.e., A is a normal subgroup). If T has property
(T), then so does the quotient T'/A.

Connections with amenability
Remark 11.7. Finite groups have property (T).

This will be a consequence of Lemma 12.10 (cf. Lemma 12.1.5, [BO]) below (asserting that for any group
I, the pair (I',v/2) is Kazhdan) combined with Proposition 11.3.

Remark 11.8. If T' is amenable with property (T), then T is finite.
This follows from the following:

Remark 11.9.

(1) If T is amenable, then the left regular representation A has almost I'-invariant vectors.

(2) If T is infinite, then the left regular representation A has no nonzero I'-invariant vectors.

Proof of Remark 11.9. (1) Has already been discussed in the proof of Theorem 7.10 (Theorem 2.6.8, [BOJ).
For completeness, we redo the construction. Suppose that I' is amenable. Let (F;);e; be a Fglner net for
T'. Then for all i € I, let

1
6= —— N5, e ().
\/|Fi|,;Fit (F)

We have ||&;|| = 1. For every s € T', we have

A(s)&—fizﬁ Y o6 Y 4

tesk;NE; teEF;\sF;
SO )
[A(9)& — &ill? = = |sFi & Fy| — 0.
| Fi]

Hence (&;)ier is a net of almost I-invariant unit vectors for the left regular representation .

(2) Suppose by contradiction that there exists £ € I2(T), £ # 0 such that £ is T-invariant for A. Note that
for all t € T, (£,8,) = (£, A(t)0e) = (At71)E, 8e) = (€, ), since € is [-invariant. Since
€N =D _ 1€ 0l = D 1€, 8e)l < oo,
ter ter
this contradicts the fact that I' is infinite. O

We now show that if I has property (T), then I" has finite abelianization. Let [I': T'] be the subgroup
of T' generated by {sts~'t=! : s,¢ € I'} (the commutator subgroup of I'). Then [[': T] < T and T'/[T': T
is abelian. Moreover, if N <G, then I'/N is abelian if and only if N contains [I': I'] (i.e., [I': T'] is the
smallest normal subgroup of I' with the property that the quotient is abelian). The group I'/[[': T is
called the abelianization of I'. Now, I'/[[": T'] is abelian, hence amenable. Moreover, if T" has property
(T), then by Lemma 11.6, T'/[T": T'] also has property (T). By Remark 11.8, I'/[I": T'] is finite.

The following are examples of discrete groups without property (T):

(1) Z™ is amenable, but not finite, so it does not have property (T).



(2) F,, n > 2 is nonamenable, but not (T) since Z™ is a quotient of F,,.

Our next goal is to prove:

Lemma 11.10 (Lemma 12.1.5, [BO]). For any group T, the pair (I',+/2) is Kazhdan.

The proof uses the following (see Appendix D):

Exercise 11.11 (Exercise D.1, [BO]). Let V be a bounded subset of a Hilbert space H and let
ro :=inf{r >0 : V C B(£,r) for some ¢ € H}.

a) Prove that there exists a unique ¢ € H, called the circumcenter of V, such that V C B((, o).
b) Prove that ¢ € conv(V).

Proof. a) For all n > 1, there exists x,, € H such that V C B(zy,,7r0 + %)
Claim: (x,),>1 is a Cauchy sequence in H.

To prove the claim, let 1 <n <m and § > 0. Then V ¢ B(22E%n g — §), so there exists y € V so that

Ty + Ty
2

—yH>r0—5.

On the other hand, ||z, —y|| < ro+1/n, ||[2m — y|| < ro+ 1/m. By the parallelogram identity ||z + wl|? +
|z — w||? = 2||2||? + 2||w]||? applied for z = (z, — ¥)/2, w = (T, — y)/2, We get

Ty +@ 2 xfo Tp —Y xfyz Tn —Y xny
n m n m . n m n o m

2 yH i H ST | T2 2

x 2 z 2
—o||n Yy 1 of|Zm Y
2
Hence
2 2 2 2

In —Tm || xn_y+xm_y + In =Y  Tm —Y|| xn"‘xmi

2 2 2 2 2 2

Given € > 0, let § = £2/(12r9) and n. > 2/6. Then for all n,m > n., we get ||z, — zu]|*> < €2. The claim
is proved.

Hence there exists ¢ € H such that x,, — ¢ as n — oo and it will also follow that V C B((, 7). Now,
suppose that there exists ¢/ € H such that V C B(¢’, 7). Let

B ¢ if nis odd
Yn = ¢ if nis even

Then V C B(ypn,r0 + %) for all n > 1. By the above proof, (y»)n>1 is Cauchy. This implies that { = ¢’

and uniqueness is proved.



b) Let K = conv(V). Suppose by contradiction that ¢ ¢ K. Since K is closed and convex, there exists a
unique yo € K such that || — yo|| = dist(¢, K), and moreover,

Re(yo — C,yo —y) <0, yeK.

Let M = {¢ —yo}*. Let y € K and write (uniquely)

Y=Y = Myo — () +2

for some A € C, z € M. In particular, y — ( = (A + 1)(yo — ¢) + 2. Since

0> Re(yo — ¢, 50 — ) = Re(=Allyo — ¢[1?),
we deduce that Re\ > 0. Set
R = sup{[ly — yol| |y € K} < o0
(since K is bounded). We have ||y — o/ = |A|?||yo — ¢||* + ||2]|* and
lly = ¢II* = 1A+ 117 llyo — ¢II* + [l
= (A" + 1+ 2Re))[lyo — ¢II* + |21
> (A + Dllyo = ¢II” + 12117
= [Mllyo = ¢II? + l201% + llvo — ¢I1?
= lly = voll* + llvo — CII%,

since ReA > 0. So |ly — ¢|I* > |ly — yolI* + |lyo — ¢||*. Hence

1/2 o\ 1/2
yo — C|? Yo — ¢
by = cll = lly = wol (1+” ” ) > lly = wol (1+” ” ) .

ly = woll® R
Set
—1/2
_ lyo — ¢|I?
Then for all y € K, ||y — ol < &|ly — ¢||. Hence, since V' C B(¢,70), we deduce that V' C B(yo, 7o),
which is impossible by definition of r¢, since drg < 7¢. O

Proof of Lemma 11.10. Let 7: T' — U(H) be a unitary representation and ¢ € H be a nonzero (I',v/2)-

invariant vector. We may assume that ||£] = 1. Note that w(I')¢ is a bounded subset of H (since



[l ()] = ||€]] = 1, for all ¢ € T, as m(t) is unitary). Hence, by Exercise 11.11, there exists a unique ¢ € H
such that 7(I')¢ C B(¢, ), where
ro = inf{r > 0 : ©(I')¢ C B(n,r) for some n € H}
and, moreover, ¢ € conv(n(I')¢). We claim that ¢ is T-invariant, i.e., 7(¢)¢ = ¢ for all ¢ € T". Indeed, we
know that 7(T')¢ C B((, 7). This implies that for all ¢ € T,
m(t)m()€ € B(w(t)¢,7o).
()

By uniqueness of the circumcenter, n(t){ = ¢ for all ¢t € T".

It remains to show that ¢ # 0. We now have

(@) 1

@
Re(é, ) > inf Re(&,w(s)¢) 21— Jsup ¢ —n(s)e]* 0,
s sel’

with the following explanations:
(1) Use that ¢ € conv(w(I')€). Suppose that ¢ € conv(r(I)§), i.e., ¢ = >0, aym(s;)€ where a; > 0,
S a;=1,5 €. Then

Re(£,¢) =Y a;Re(,m(s:)€)
=1

> o inf Re(¢, n(s)¢)
=1 °

= inf Re(¢, 7(s)¢).-
The general case follows by continuity.
(2) We have ||z — w|? = ||2]|? + ||[w]]? — 2Re(z,w) for all z,w € H. In particular, if ||z|| = 1 = ||Jw]|,
then
|z — w|* = 2 — 2Re(z, w).
(3) ¢is (T, V/2)-invariant.
We get Re(, ¢) > 0 which implies that ¢ # 0 and the conclusion follows. O
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Section 12.1: Kazhdan’s property (T)

Equivalent characterizations of Kazhdan’s property (T)

Let I be a discrete group and let 7: I' — B(H) be a unitary representation.

Definition 12.1 (See Appendix D). Let m1: I' = B(H;) be another unitary representation.
(1) We say that my C 7w (w1 4s contained in ) if there exists a projection p € w(I") C B(H) such that
1~y Tp, where m,: I' = B(pH) is defined by

mp(t) :=7m(t)p=pr(t)p, tel.

(Recall that if my: T — B(H;), ma: I' — B(Hs) are unitary representations, then m ~, s if
there exists a unitary U: H; — Hj such that mo(t) = Umq (¢)U* for all t € T'.)
(2) We say that m; < w (my s weakly contained in ) if for all z € CT,

[m ()] < [lw ()],

or equivalently, if the map 7(s) — m1(s), s € I' extends to a *-homomorphism from C*(7(I")) to

C*(m(T)).
Remark 12.2. m; C 7 implies m; < 7, but the converse is not necessarily true.
Proposition 12.3. Let I' be a discrete group, let m: I' — B(H) be any unitary representation and let

mo: I' = B(H) be the trivial representation, i.e., mo(t) =1, for allt € T.

a) mo < m if and only if there exists a net of almost T-invariant unit vectors (&)ier C H, i.e.,
lim,; |7 (¢)& — &|| =0, for allt €T.

b) mo C 7 if and only if there exists £ € H, ||€|| = 1 such that w(t)§ = &, for allt € T (i.e., £ is
T-invariant).

Consequently, T has property (T) if and only if for all unitary representations m of T, if mg < =, then
o C .

Proof. a) “<": Let x = >_ oyt € CI' (a finite sum). Then ||mo(x)| = |>_ a:| and

(@il = |3 asts|| = |3 ar] el =[S e

Hence ||7(z)|| > ||mo(2)]|], i-e., mo < 7.

= [lmo(2)[]-

“=": For the proof we will use the following:

Remark 12.4. Given € > 0 and n € N, there exists § > 0 such that for all unit vectors &;,...,&, € H
satisfying || >"r_, &l > n — &, we have

& =&l <e, i,5€{1,...,n}.



Proof of Remark 12.4. Choose § > 0 such that 1/2(2né — §2) < e. Then
2

> (n—0)* =n?—2né + 6.

n

> (6.g) =

i,7=1

n

> &

k=1
Hence for all i,j € {1,...,n}, Re(&, &) > 1 —2nd + §2. Next, recall that

1 - Re(6i,&) = 56 - &1

(using that ||z — w||? = [|2]|* + [|w||* — 2Re(z, w), z,w € H). Hence ||§; — &||* < 2(2nd — %) < £2. O

Now, let F' C I be finite such that e € F' and let € > 0. Set = ), t. Then |7(x)| > ||7o(x)| = |F]

(since m9p < m). By the triangle inequality, we get ||7(z)|| = |F|. Let 6 > 0 be as in Remark 12.4,

corresponding to n = |F|. Choose ¢ € H, [|£]| =1 with ||w(z)¢]| > [F| =6, ie., ||X,cp ()] > |F| - 0.

By Remark 12.4, we have ||7(t)€ — w(s)&|| < € for all s,¢ € F. In particular (since e € F), it follows that
()€ —¢ll <e

for all ¢t € F'. This implies that there exists a net (§;) of almost I'-invariant unit vectors in H.

b) “=": There exists a projection p € n(I')’ C B(H) such that my ~,, m,. This implies that pH C C&; (a
1-dimensional subspace) for some &y € H. So w(t)&y = & for all t € T

“<”: Suppose that there exists §y € H such that 7(¢)&y = & for all t € T. Let p: H — C¢&; be the
orthogonal projection. Check that p € n(T')’ C B(H) and that 7, ~, m. O

Appendix D

Cocycles of unitary representations

Definition 12.5. A 1-cocycle on T" with coeflicients in a unitary representation (m, H) of I' is a function
b: I' — H such that
b(st) = b(s) + mw(s)b(t), s,tel.
(Note that b(e) = 0, by setting s =t =e.)
Remark 12.6. If (7, H) is a unitary representation of I and £ € H, then
b(s) =& —m(s)¢, seTl

defines a 1-cocycle on T' (such a 1-cocycle is called a 1-coboundary).

Proof. For all s,t €T, b(s) +w(s)b(t) =& — w(s) + w(s)(§ — w(t)€) = & — w(st)€ = b(st). O

Definition 12.7. Let
AffIso(H) ={y: H - H : (&) =u& + &, & € H, for some u e U(H), & € H}.

Note that ¢ € AffTso(H) implies that ¢ is an affine isometry of H. The converse, in general, is not
necessarily true (e.g., if H = C, then ¢(z) = Z is an affine isometry of H, but clearly ¢ ¢ AffIso(H).)
However, if H is a real Hilbert space, then AffIso(H) is the set of all affine isometries of H.



Proposition 12.8. If0: T' — AffIso(H) is a group homomorphism of T into the group AffIso(H), then
()¢ =7(s)€+b(s), sel, £€H

for some unitary representation w: I' — B(H) and some 1-cocycle b on Twith coefficients in (w, H).
Conversely, if m: T' — B(H) is a unitary representation of I' and b is a 1-cocycle with coefficients in
(m,H), then
0(s)¢ =n(s)6+0b(s), sel, (e€H

defines a group homomorphism 6: T' — AffIso(H).
Proof. It : T' — AffIso(H) is a group homomorphism, then for all s,t €T, £ € H,
O(st)€ = m(st) &+ b(st).
—— ——

cU(H) €H
On the other hand, 0(s)0(¢)¢ = 0(s)(w(t)E+b(t)) = w(s)m(t)E+7(s)b(t)+b(s). Since 6 is a group homomor-
phism, we have 0(st)¢ = 0(s)0(¢)€. This argument shows that 7(st) = w(s)w(¢t) and b(st) = 7(s)b(t) +b(s)

for all s,¢t € I'. The statement is proved. The converse one is similar (and more straightforward). O

Remark 12.9. If b(s) = & — m(s)&p is a 1-coboundary and if 0(s)§ = w(s)€ +b(s) forall s € T, € € H,
then
0(s) = m(s)(§ — &) +&, seT, {eH.
In particular 0(s)§y = & for all s € I
Conversely, if 8(s) = w(s)€ 4+ b(s) for all s € T, £ € H for some 1-cocycle b and if 0(s)§y = &, for all
s € I', for some & € H, then

b(s) = 0(s)éo — w(8)&o = & — 7(s)&o, se€T,

i.e., bis a l-coboundary.
Lemma 12.10 (Lemma D.10, [BO]). A 1-cocyle is bounded if and only if it is a 1-coboundary.

Proof. If b(s) = & — mw(s)§ for all s € T' (for some £ € H), then ||b(s)|| < 2||¢||, for all s € T, i.e., bis
bounded.

Conversely, assume that b is bounded, i.e., that b(T") is a bounded subset of H. Let ( € H be the unique
circumcenter of b(T"), i.e., b(I') C B((,ro), where 79 = inf{r > 0 : b(T') C B(n,r),for somen € H} (cf.
Exercise 12.11). Further, let §: T' — AffIso(H) be given by

0(s)é =m(s)E+b(s), sel, e H.

Note that 0(s)b(t) = 7(s)b(t) 4+ b(s) = b(st) for s,t € I'. This implies that 6(s)b(T") = b(T"), for all s € T.
Since 6(s) € AffIso(H), we deduce that

0(s)b(I") € B(0(s)¢,19), seT.
——
b(I)
By uniqueness of the circumcenter, we conclude that 6(s){ = ¢, for all s € I'. By Remark 12.9 above, b is

a 1-coboundary. (|



In what follows we will make use of Schoenberg’s theorem (Theorem D.11, [BO]), which we now discuss.
A kernel k : T' x I' = R is called conditionally negative definite if there exists a function b: I' — H, for
some Hilbert space H, such that

k(s,t) = [[b(s) = b(®)[I*, s,teT.
It can be shown that k is conditionally negative definite if and only if the following three conditions hold:
o k(s,t) =k(t,s) forall s,t €T,

o > i aiajk(sis;) <0forall sy,...,s, €T and aq,...,a, € R with 35 a; =0,
o k(s,s)=0forall seT.

Theorem 12.11 (Schoenberg, Theorem D.11, [BO]). Let k be a conditionally negative definite kernel on
T'. Then the kernel

0 (s,t) = e Mkt g tel
is positive definite, for all v > 0. In particular, for any 1-cocycle b on T and any v > 0, the function 9013/
on T, defined by

@Z(s) - e**fl\b(S)HQ7 sel,

is positive definite.

Remark 12.12. Let b: I' = H be a 1-cocycle on I" with coefficients in a unitary representation (7, H)
of T'. Tt follows by Schoenberg’s theorem above that for all v > 0, the function @g: I' —» R defined by

¢4 (s) = exp(—lb(s)|*), seT (%)
is positive definite. Consider the associated GNS triple (%, HY, &) (cf. Section 2.5, Definition 2.5.7, See
Lecture 6). Recall that
¥h(s) = (m)(s)€7,€3), seT, (x%)
where & = b and b (s)&h = b, for all s € T'. Hence span{m’(s)¢b : s e '} = HY.

Lemma 12.13 (Lemma D.12, [BO]). Let b be a 1-cocycle on T' and ~ > 0. Let (x5, HY, &%) be the GNS
triple associated to the positive definite function @Z: I' = R as in above Remark 12.12.

Suppose that b is unbounded on a subgroup A of I'. Then there are no nonzero A-invariant vectors for
(W,l;,H,l;),
Proof. Let (sn)n>1 C A be a sequence such that [|b(s,)|| — oo as n — oco. We will show that for all
¢ € HS,
(This gives the conclusion.) By continuity, it suffices to prove that (1) holds on a dense subset of Hs.

Since span{n?(s)¢} : s € '} is dense in HY, it suffices to show that (1) holds for any vector of the form

¢ = Ef\il Oéiﬂ',l;(ti) 2, where t; € T, o; € C and N € N. Indeed, by (x*),

N

lim sup ‘<7T:(Sn)<,c>‘ = lim sup Z (Tiajapz(t;lsntj) . (2)
Now, for all 4,5 € {1,..., N}, by (*) we have
95 (7 suty) = exp(=b(t; 'snt;)|*), n €N (3)



Note that
b(t; Psnty) = b(t; 1)+t )b(sat;) = b(t; 1) + w(t; )b(sn) + w(t;  sn)b(t).

By the triangle inequality,

1b(t5 st )| = llm (87 )b(sa)ll = (bCE Il + I (87 s0)b(E;)1)
= [Ib(sn)ll = (lIb(t; D) + 1lb(t,)1)) = 00, as n — oo.

Using this in (3), we obtain
lim sup gof’y(tjlsntj) = lim sup exp(—||b(¢; 'snt;)||?) = 0.

n—oo n— oo

Hence the limsup on the left hand side of (2) is equal to zero, and the proof is complete. O

The following theorem gives a few equivalent characterizations of relative property (T).

Theorem 12.14 (Theorem 12.1.7, [BO]). Let T be a discrete countable group and A C T' a subgroup. The
following are equivalent:
(1) The inclusion A C T' has relative property (T).
(2) There exists a finite subset E C T' and k > 0 with the following property: If (m, H) is a unitary
representation of I' and P is the orthogonal projection from H onto the subspace of all A-invariant

vectors, then
1
¢ ~ Pl < 3 supln(s)é — €, €€
sEE

(Note that a pair (E, k) satisfying this property will then be a Kazhdan pair for A C T'. Indeed, if
&o is a nonzero (E, k)-invariant vector, then ||&g — P& < ||€oll, which implies that P&y # 0, i.e.,
P £ 0, so there are nonzero A-invariant vectors.)

(3) Any sequence of positive definite functions on T’ that converges pointwise to the constant function
1, converges uniformly on A.

(4) Every 1-cocycle b: T' — H is bounded on A.

(5) Ewvery action of T' on AffIso(H) has a A-fized point.

Moreover, if A =T, then the above conditions are equivalent to:

(6) The group T is finitely generated and for any generating subset S C T, there exists k = k(I",S) > 0
such that (S, k) is a Kazhdan pair.

Note that we have already discussed in the previous lecture the equivalence of (1) and (2) when A =T

Proof. We will show
3)

7 N\



(1) = (4): For this, we prove =(4) = —(1). Suppose that there exists a 1-cocycle b: I' — H which is
unbounded on A. For every n > 1, consider ¢! : I' = R defined by

b 2

gpﬁ(s):zexp( 1bCs)l ), sel

n n

which is positive definite by Schoenberg’s theorem. Let (7% , H4 ,£% ) be the associated GNS triple. Let
oo
=P

n=1

:T — B(HY),

S-S

b b
where H* = @, H
Claim 1. There are no nonzero A-invariant vectors for 7°.

Proof. Let ¢ be a A-invariant vector for 7°. For n > 1, let P,: H® — Hb C HY be the orthogonal
projection. One can see that P,( is a A-invariant vector for 7§ 1 Then, by Lemma 12.13, we deduce that
P,¢ =0. Since ¢ = >~ | P,(, we deduce that ¢ = 0. O

Claim 2. The sequence (£} ),>1 is almost -invariant for 7°.

Proof. For alln > 1 and s €T,

exp( IbGs )“2) — o (s) = (mh (s)eh, €4 = (" (s)eh, €h).

n n n n n n n

This implies Re(n®(s)£%, €4 ) — 1 as n — oo. Since

Re(r'(s)€l, €4) = 1 - Sl (s)ek — €42

for all s € T" and n > 1, Claim 2 follows. O

It is clear that Claims 1 and 2 together imply —(1).

(4)=(5): Let 6: I" — AffIso(H) be a group homomorphism. Then there exists a 1-cocycle b: I' — H
associated to it (by Proposition 12.8). By (4), b is bounded on A. Then, by the proof of Lemma 12.10,
there exists ¢ € H such that 6(s){ = ¢ for all s € A, i.e., 6 has a A-fixed point.

(5)=(4): Let b: I' = H be a 1-cocycle. Let §: I' — AffIso(H) be the group homomorphism associated
to it (cf. Proposition 12.8). By Remark 12.9, we infer that b is a 1-coboundary on A. By Lemma 12.10,
b is bounded on A.

(4) = (2): We prove —(2) = —(4). Write I' = .2, E,,, where By C Ey C -+ C --- are finite sets. By
—(2), for all n > 1 there exists a unitary representation (m,, H,) of " and §,, € H,, such that

1
qn [€n — Pu&nll > sup (& — mn(8)&nl| := dn.
seE,



(Take k,, = 47™.) Here P,: H,, — {all A-invariant vectors (in H,) for m,} is the orthogonal projection.
Let m:= @, mn: I = B(H), where H = @, | H,,. Note that for all s € T,

gn - ﬂ-n(s)gn _ =~
(2n5n >n>1 €H= gEHn

Indeed, if s € T', then s € Ej for some k, and hence s € F,, for all n > k, so
2

ot 2”6n = 2"(5

2”6 < 0.

Now, define a map o: I' — H by

o(s) = En = T (8)n €H, sel.
2n5n n>1

We claim that o is a 1-cocycle on I' with coefficients in (7, H). Indeed, for all n > 1, let 0,,: I' — H,, be
defined by

276, 276,

Hence o, is a 1-coboundary and therefore a 1-cocycle. Then for all s,t € T,

— wn(s)%, sel.

@ on(st) @ n(8) + T (8)on(t)) = o(s) + w(s)b(t).

n=1
So the claim above is proved.
Now, note that for all n > 1, m,(A)&, is a bounded subset of H, (since m,(t) is unitary for all ¢t € A).
Hence by Exercise 12.11, there exists a unique (,, € H,, such that

Tn(A)én C B(Gny7n)

where 7, = inf{r > 0 : m,(A)&, C B(n,r) for some n € H,}. Moreover, (, € conv(m,(A)¢,). By
uniqueness of (,, it follows that

7T'n(S)Cn = Cna s €A

Hence ¢, € P, H,. Now, use that ¢, € conv(m,(A)&,) to conclude that for e, = %||§n — P,&,|| there exists
N=N(n)eN, q; >OWich;V:1aj =1,s; € A, 1 <j <N such that

N
G = Y ama(s5)én| < en.
j=1

Then
[€n = Prénll < 160 — Gall < Zaﬂ"n $j)én|| +&n < Z%H&n = n(85)nll + €n-

Therefore there exists j € {1,..., N} such that

1
||§n - ﬂ'n(sj)fnn > ||£n - nan —&n = §||€n - Pnfﬂ”

Denote s; by s, (note that j depends on n, after all). We have therefore proved that for all n > 1, there
exists d,, > 0 and s,, € A such that

gn — Tn (Sn)gn
2n6n

2 L= Paall 1470 _ o
=2  2n§, 2216,




Hence [|o(s,,)|| > 27! for all n > 1. This implies that the 1-cocycle o is unbounded on A, so —=(4) holds.

(2) = (3): Assume that (2) holds, and let (E, k) be as in condition (2). We first show that for all positive
definite functions ¢: I' — C with ¢(e) = 1 we have

sup|1 = (1) <  max (2Re1 — 9())"*. )

Note that if ¢ is positive definite, then |p(t)| < |p(e)] =1 for all t € I, so Rep(t) <1 for all t € I
Let (m,, Hy, &) be the GNS triple associated to ¢. Then

@(t) = <7Ttp(t)§sa7ftp>a tel
and ||§,|| = 1. Let P be the projection from H,, onto the space of A-invariant vectors. We now have
sup |1 — p(t)] = sup [(§p — T (£)€0, &p) |

teA teA
(a)
< sup ||€cp - Ww(t)&pll Hfga”
teA N~

=1

(®)
= sup ||7T<p(t)PL‘£w - PL&@”
teA

< 2sup | PHE || = 2| P&, ||
teA

=2[|§, — P&
2
< Zsup|m()¢, — &l
sekE
(0 2 _ 1/2
= 7 max (2Re(1 - ¢(s)))"",

with the following explanations:

a) This is just the Cauchy-Schwarz inequality.
b) Write I = P+ P+. Then

§o — T (t)ep = —(P+ PH)(my(t)€,) + (P + P&,
= Ww(t)(P_F Pl)gga - (P + PL)fcp
= my(t) P&, — PHE,

since 7, (t) P&, = P&,.
¢) E is finite, and ||z — wl|? = ||2]|? + ||w||? — 2Re(z, w) for all z,w € H.
Now, let (¢5,)n>1 be a sequence of positive definite functions on I' converging pointwise to 1 on I'. First,
note that we may assume that ¢, (e) =1 for all n > 1. (Otherwise, set v, := w‘:zbe). Then 1, is positive
definite on I' with ¢, (e) = 1. Since ¢,(e) — 1 as n — 00, sup,cr |¥n(t) — @n(t)| = 0, as n — oco. So if
we show that (¢,)n>1 converges uniformly to 1 on A, it will follow that (¢, )n>1 converges uniformly to
1onA.)

Now apply to each ¢, the inequality ((0) proved above. For n > 1,

2
sup |1 — @n(t)] < z max (2Re(1 — <pn(s)))1/2 -0
teA selE

as n — oo. Hence ¢,, — 1 uniformly on A.



(3)=(1): Let (m,H) be a unitary representation of I' which contains almost I'-invariant unit vectors
(€n)n>1. Forall n > 1, let ,: I' = C be defined by

on(s) = (7(5)€n,&n), s€T.
Then ¢, is positive definite with ¢, (e) = 1. By the Cauchy-Schwarz inequality, we have for all s € T and
n > 1 that
11— n(s)| < Im(s)€n — &nll = 0, asn— oo.
Therefore (¢n)n>1 converges pointwise to the constant function 1. By hypothesis, ¢, will converge
uniformly on A to the constant function 1. Hence there exists N € N such that for all n > N,
Sup 11— ¢n(s)] < %

Note that ||7(s)&, — &all? = 2 — 2Rep(s) = 2Re(1 — ¢(s)) < 2|1 — (s)|. Hence, for all n > N we have
sup,ea [IT(8)&n — &nll < 1, ie., &, is a (A, 1)-invariant vector, hence (A, v/2)-invariant vector. By Lemma

12.10 (cf. Lemma 12.1.5, [BO]J), there exists a nonzero A-invariant vector, i.e., condition (1) holds. O

Further examples

Definition 12.15. Let I' be a locally compact group. A lattice in I' is a discrete subgroup A of I' such

that T'/A carries a finite I-invariant regular Borel measure. (Such a measure is unique up to a constant.)

Theorem 12.16. Let T' be locally compact and let A C T be a discrete subgroup. If A is a lattice in T,
then T' has property (T) if and only if A has property (T).

Examples 12.17.
(1) SL(2,R) does not have property (T) (because Fy < SL(2,R) as a lattice). Also SL(2,Z) does not
have property (T).
(2) SL(n,Z) is a lattice in SL(n,R) for all n > 3. Both have property (T).
(3) SL(n,Z) x Z™ is a lattice in SL(n,R) x R™ for all n > 3. Both have property (T).
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