Lecture 1, GOADyn

September 7, 2021

Let A be a (unital) C^{*}-algebra. We define

$$
A_{\mathrm{sa}}=\left\{a \in A \mid a=a^{*}\right\}
$$

Note that $A=A_{\mathrm{sa}}+i A_{\mathrm{sa}}$, since for all $a \in A$ we have

$$
a=\underbrace{\left(\frac{a+a^{*}}{2}\right)}_{a_{R}}+i \underbrace{\left(\frac{a-a^{*}}{2 i}\right)}_{a_{I}}, \quad a_{R}, a_{I} \in A_{\mathrm{sa}}
$$

We define

$$
\begin{aligned}
A_{+} & =\left\{a \in A: a=a^{*}, \sigma(a) \subset[0,+\infty)\right\} \\
& =\left\{a \in A: a=b^{*} b \text { for some } b \in A\right\} \\
& =\left\{a \in A: a=b^{2} \text { for some } b \in A_{\mathrm{sa}}\right\} .
\end{aligned}
$$

Further, for all $a \in A_{\mathrm{sa}}, a=a_{+}-a_{-}$, where $a_{+}, a_{-} \in A_{+}$with $a_{+} a_{-}=0$. Hence every element in A is a linear combination of 4 positive elements.

Exercises: (Facts about A_{+}and A_{sa})
(1) For all $a \in A_{\mathrm{sa}},-1_{A}\|a\| \leq a \leq\|a\| 1_{A}$.
(2) A_{+}is a cone, i.e.,

- $a \in A_{+}$and $\lambda>0$ implies $\lambda a \in A_{+}$,
- $a, b \in A_{+}$implies $a+b \in A_{+}$.
(3) $0 \leq a \leq b \in A$ implies $0 \leq c^{*} a c \leq c^{*} b c$, for all $c \in A$.
(4) $0 \leq a \leq b \in A$ implies $\|a\| \leq\|b\|$.
(5) For $a \in A_{\mathrm{sa}},\|a\| \leq 1$ if and only if $-1_{A} \leq a \leq 1_{A}$.

Let A, B be C^{*}-algebras. Then $M_{n}(A), M_{n}(B)$ are C^{*}-algebras for all $n \geq 1$. Indeed, if $A \subset B(H)$, then

$$
M_{n}(A) \subset B(\underbrace{H \oplus \cdots \oplus H}_{n})
$$

Let $\varphi: A \rightarrow B$ be a linear map. For $n \geq 1$, consider $\varphi_{n}: M_{n}(A) \rightarrow M_{n}(B)$ given by

$$
\varphi_{n}\left(\left[a_{i j}\right]\right):=\left[\varphi\left(a_{i j}\right)\right], \quad\left[a_{i j}\right] \in M_{n}(A)
$$

Sometimes we use the notation $\varphi_{n}=\varphi \otimes \operatorname{Id}_{M_{n}(\mathbb{C})}$.
Definition 1.1. The map φ is called:

- positive if $\varphi\left(A_{+}\right) \subset B_{+}$.
- n-positive if φ_{n} is positive.
- completely positive (c.p.) if φ_{n} is positive for all $n \geq 1$.

Remark 1.2. In order to talk about positivity, we do not really need C^{*}-algebras. Given a C^{*}-algebra A, consider a closed linear subspace $E \subset A$ such that $\left\{e^{*}: e \in E\right\}=E^{*}=E$ and $1_{A} \in E . E$ is called an operator (sub)system.

Note that some books, e.g., Paulsen: "Completely bounded maps and Operator Algebras", do not require E to be closed. Here we follow the convention from Brown-Ozawa [BO].

Examples of operator systems.

- Unital C^{*}-algebras are operator systems.
- $\left\{\left[\begin{array}{ll}\lambda I & x \\ y^{*} & \mu I\end{array}\right]: x, y \in B(H)\right\} \subset M_{2}(B(H))$ is an operator (sub)system.
- $\left\{\left[\begin{array}{ll}\alpha & \beta \\ 0 & 0\end{array}\right]: \alpha, \beta \in \mathbb{C}\right\} \subset M_{2}(\mathbb{C})$ is not an operator system.

If $E \subset A$ is an operator subsystem, then we define

$$
\begin{aligned}
E_{\mathrm{sa}} & =\left\{a \in E \mid a^{*}=a\right\} \subset A_{\mathrm{sa}}=A_{+}-A_{+} \\
E_{+} & =E_{\mathrm{sa}} \cap A_{+} \\
M_{n}(E)_{+} & =\left(M_{n}(E)\right)_{\mathrm{sa}} \cap M_{n}(A)_{+}
\end{aligned}
$$

(so $M_{n}(E)$ inherits the order structure from $M_{n}(A)$). One can then consider $\varphi: E \rightarrow B(E \subset A)$ and define positive, n-positive and c.p. as above.

Note that there are positive maps which are not c.p. Let $\varphi: M_{2}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$ be given by $\left[a_{i j}\right] \mapsto\left[a_{i j}\right]^{T}$. Then

- φ is positive: Let $a \in M_{2}(\mathbb{C})_{+}$. Then $a=b^{*} b$ for some $b \in M_{2}(\mathbb{C})_{+}$and

$$
\varphi(a)=\varphi\left(b^{*} b\right)=\left(b^{*} b\right)^{T}=b^{T}\left(b^{*}\right)^{T}=b^{T}\left(b^{T}\right)^{*}=\varphi(b) \varphi(b)^{*} \geq 0
$$

- φ is not 2-positive: Let $\left[\begin{array}{ll}e_{11} & e_{12} \\ e_{21} & e_{22}\end{array}\right] \in M_{2}\left(M_{2}(\mathbb{C})\right)_{+}$(see the proof of Proposition 1.5.12). However,

$$
\varphi_{2}\left(\left[\begin{array}{ll}
e_{11} & e_{12} \\
e_{21} & e_{22}
\end{array}\right]\right)=\left[\begin{array}{ll}
e_{11}^{T} & e_{12}^{T} \\
e_{21}^{T} & e_{22}^{T}
\end{array}\right]=\left[\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]}
\end{array} \begin{array}{ll}
{\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]} \\
{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]}
\end{array}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where the middle matrix is not positive, since it has determinant -1 .
Examples of c.p. maps. (1) Let $E \subset A$ be an operator subsystem. If $\varphi: E \rightarrow C(\Omega)$ (where Ω is a compact Hausdorff topological space) is positive, then φ must be c.p.

Proof. Let $n \geq 1$ and let $\left[a_{i j}\right] \in M_{n}(E)_{+}$. Then

$$
\varphi_{n}\left(\left[a_{i j}\right]\right)=\left[\varphi\left(a_{i j}\right)\right] \in M_{n}(C(\Omega)) \cong C\left(\Omega, M_{n}(\mathbb{C})\right)
$$

We must show that $\forall \omega \in \Omega,\left[\varphi\left(a_{i j}\right)(\omega)\right] \geq 0$ or, equivalently, $\alpha^{*}\left[\phi\left(a_{i j}\right)(\omega)\right] \alpha \geq 0, \forall \alpha=\left[\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{n}\end{array}\right] \in M_{n, 1}(\mathbb{C})$.
We have $\alpha^{*}\left[\phi\left(a_{i j}\right)(\omega)\right] \alpha=\sum_{i, j} \overline{\alpha_{i}} \varphi\left(a_{i j}\right)(\omega) \alpha_{j}=\varphi\left(\sum_{i, j} \overline{\alpha_{i}} a_{i j} \alpha_{j}\right)(\omega)=\varphi\left(\alpha^{*}\left[a_{i j}\right] \alpha\right)(\omega) \geq 0$, by positivity of φ.
(2) If $\pi: A \rightarrow B$ is a ${ }^{*}$-homomorphism, then π is positive. In fact, π is c.p. (since $\pi_{n}: M_{n}(A) \rightarrow M_{n}(B)$ is a *-homomorphism for all $n \geq 1$).

Definition 1.3. Let $\varphi: A \rightarrow B$ be linear and bounded. We say that φ is completely bounded (c.b.) if

$$
\|\varphi\|_{\mathrm{cb}}=\sup _{n}\left\|\varphi_{n}\right\|<\infty
$$

If $\|\varphi\|_{\mathrm{cb}} \leq 1$, we say that φ is completely contractive (c.c.). If all φ_{n} are isometries, we say that φ is a complete isometry.

Remark 1.4. Let $\varphi: A \rightarrow B$ be a positive, linear map. Then:
(1) $\varphi\left(A_{\mathrm{sa}}\right) \subset B_{\mathrm{sa}}$.
(2) $\varphi\left(a^{*}\right)=\varphi(a)^{*}$ for all $a \in A$.

Proof. (1) Follows from $a \in A_{\mathrm{sa}} \Rightarrow a=a_{+}-a_{-}$with $a_{+}, a_{-} \in A_{+}$.
(2) Let $a \in A$. Then $a=a_{R}+i a_{I}$, where

$$
a_{R}=\frac{a+a^{*}}{2}, a_{I}=\frac{a-a^{*}}{2 i} \in A_{\mathrm{sa}}
$$

By using (1), $\varphi(a)^{*}=\left(\varphi\left(a_{R}+i a_{I}\right)\right)^{*}=\left(\varphi\left(a_{R}\right)+i \varphi\left(a_{I}\right)\right)^{*}=\varphi\left(a_{R}\right)^{*}-i \varphi\left(a_{I}\right)^{*}=\varphi\left(a_{R}-i a_{I}\right)=\varphi\left(a^{*}\right)$.

On the connection between order and norms

Recall that if $\varphi: A \rightarrow \mathbb{C}$ is positive and linear, where A is unital, then φ is bounded with $\|\varphi\|=\varphi(1)$. The state space of A is given by

$$
S(A)=\{\varphi: A \rightarrow \mathbb{C} \text { positive and linear }:\|\varphi\|=1\}
$$

Proposition 1.5. Let A, B be C^{*}-algebras. If $\varphi: A \rightarrow B$ is positive and linear, then φ is bounded. Suppose further that A is unital. If, moreover, φ is 2-positive, then

$$
\|\varphi\|=\|\varphi(1)\|
$$

In particular, if φ is c.p., then φ is c.b. with

$$
\|\varphi\|=\|\varphi\|_{\mathrm{cb}}=\|\varphi(1)\|
$$

(Hence, if φ is unital and c.p. (u.c.p.), then φ is completely contractive.)
Proof. We first show that $\varphi: A \rightarrow B$ positive and linear implies that φ is bounded. Consider the family $\{f \circ \varphi \mid f \in S(B)\}$. Then for all $f \in S(B)$,

$$
|(f \circ \varphi)(a)| \leq\|\varphi(a)\|, \quad a \in A
$$

By the Uniform boundedness principle, there exists $K>0$ such that

$$
|(f \circ \varphi)(a)| \leq K\|a\|, \quad f \in S(B), a \in A
$$

This implies that

$$
\|\varphi(a)\| \leq K\|a\|, \quad a \in A_{\mathrm{sa}}
$$

(Use the fact that for any self-adjoint element in a C^{*}-algebra, there exists a (pure) state on the C^{*} algebra, whose absolute value on the given self-adjoint element is equal to the norm of that element.) From here we deduce that $\|\varphi(a)\| \leq 2 K\|a\|$ for all $a \in A$. Hence φ is bounded.

Now, suppose that A is unital and assume that φ is 2-positive. For all $a \in A_{\mathrm{sa}}$,

$$
-\|a\| 1_{A} \leq a \leq\|a\| 1_{A} \Rightarrow-\|a\| \varphi(1) \leq \varphi(a) \leq\|a\| \varphi(1) \Rightarrow\|\varphi(a)\| \leq\|a\|\|\varphi(1)\|
$$

To pass from A_{sa} to A, we use the following 2×2 matrix trick: Given $a \in A$, set

$$
\tilde{a}=\left[\begin{array}{cc}
0 & a^{*} \\
a & 0
\end{array}\right] \in M_{2}(A)
$$

Then $\tilde{a}^{*}=\tilde{a},\|\tilde{a}\|_{M_{2}(A)}=\|a\|_{A}$. Note that

$$
\varphi_{2}(\tilde{a})=\left[\begin{array}{cc}
0 & \varphi(a)^{*} \\
\varphi(a) & 0
\end{array}\right],\left\|\varphi_{2}(\tilde{a})\right\|=\|\varphi(a)\|
$$

φ_{2} is positive, \tilde{a} is self-adjoint, so by what we proved above, we have

$$
\left\|\varphi_{2}(\tilde{a})\right\| \leq\|\tilde{a}\|\left\|\varphi_{2}(1)\right\|,
$$

or, equivalently, $\|\varphi(a)\| \leq\|a\|\|\varphi(1)\|$. This implies that $\|\varphi\| \leq\|\varphi(1)\|$. We actually have equality. The rest follows easily.

Remark 1.6.

(i) The following sharper result is true (see Corollary 2.9, Paulsen):

If A, B are unital C^{*}-algebras and $\varphi: A \rightarrow B$ is positive and linear, then

$$
\|\varphi\|=\|\varphi(1)\| .
$$

(ii) The statement that any c.p. map $\varphi: A \rightarrow B$ satisfies

$$
\|\varphi\|=\|\varphi\|_{\mathrm{cb}}=\|\varphi(1)\|
$$

can also be obtained as a consequence of Stinespring's theorem below.
Lemma 1.7. Let A be a unital C^{*}-algebra and $a \in A$. Then

$$
\|a\| \leq 1 \Leftrightarrow\left[\begin{array}{cc}
1 & a \\
a^{*} & 1
\end{array}\right] \in M_{2}(A)_{+}
$$

Proof. " \Rightarrow ": If $\|a\| \leq 1$, then

$$
\left\|\left[\begin{array}{cc}
0 & a \\
a^{*} & 0
\end{array}\right]\right\|=\max \left\{\|a\|,\left\|a^{*}\right\|\right\}=\|a\| \leq 1
$$

$\left[\begin{array}{cc}0 & a \\ a^{*} & 0\end{array}\right] \in M_{2}(A)_{+}$and $1_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is the unit in $M_{2}(A)$. Hence $-1_{2} \leq\left[\begin{array}{cc}0 & a \\ a^{*} & 0\end{array}\right] \leq 1_{2}$, which implies that $0 \leq\left[\begin{array}{cc}1 & a \\ a^{*} & 1\end{array}\right]$.
" \Leftarrow ": Suppose that $\left[\begin{array}{cc}1 & a \\ a^{*} & 1\end{array}\right] \geq 0$ in $M_{2}(A) \subset M_{2}(B(H))(A \subset B(H))$. Then for all $\xi, \eta \in H$,

$$
\begin{aligned}
0 \leq\left\langle\left[\begin{array}{cc}
1 & a \\
a^{*} & 1
\end{array}\right]\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right],\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]\right\rangle & =\langle\xi, \xi\rangle+\langle a \eta, \xi\rangle+\left\langle a^{*} \xi, \eta\right\rangle+\langle\eta, \eta\rangle \\
& =\|\xi\|^{2}+2 \operatorname{Re}\langle a \eta, \xi\rangle+\|\eta\|^{2}
\end{aligned}
$$

Assume by contradiction that $\|a\|>1$. Then there exist unit vectors $\xi, \eta \in H$ with $\langle a \eta, \xi\rangle<-1$. Then, with the above calculations,

$$
0 \leq 1+2 \operatorname{Re}\langle a \eta, \xi\rangle+1=2+2 \operatorname{Re}\langle a \eta, \xi\rangle<2-2=0
$$

a contradiction! Thus $\|a\| \leq 1$.

Lemma 1.8. Let $v \in B(H)$. Then v is self-adjoint and $-1_{H} \leq v \leq 1_{H}$ if and only if

$$
\left\|v-i t 1_{H}\right\| \leq \sqrt{1+t^{2}}, \quad t \in \mathbb{R}
$$

Proof. " \Rightarrow ": $\sigma(v) \subset[-1,1]$. By functional calculus, $v \in C^{*}(v) \subset B(H)$ corresponds to $f(\lambda)=\lambda$ and $v-i t 1_{H}$ corresponds to $g(\lambda)=\lambda-i t$ in $C(\sigma(v))$, where $\lambda \in \sigma(v)$. Hence

$$
\left\|v-i t 1_{H}\right\|=\|\lambda-i t\|_{\infty}=\sup _{t \in \sigma(v)}|\lambda-i t|=\sup _{\lambda \in \sigma(v)} \sqrt{\lambda^{2}+t^{2}} \leq \sqrt{1+t^{2}}
$$

since $\sigma(v) \subset[-1,1]$.
$" \Leftarrow "$: Suppose $v=a+i b$, with a, b self-adjoint. Then

$$
\begin{aligned}
v-i t 1_{H}=a+i\left(b-t 1_{H}\right) & \Rightarrow\left\|\left(a+i\left(b-t 1_{H}\right)\right)^{*}\left(a+i\left(b-t 1_{H}\right)\right)\right\|=\|\underbrace{a+i\left(b-t 1_{H}\right)}_{v-i t 1_{H}}\|^{2} \leq 1+t^{2}, \quad t \in \mathbb{R} \\
& \Rightarrow 0 \leq\left(a+i\left(b-t 1_{H}\right)\right)^{*}\left(a+i\left(b-t 1_{H}\right)\right) \leq\left(1+t^{2}\right) 1_{H}, \quad t \in \mathbb{R} \\
& \Rightarrow 0 \leq \underbrace{a^{*} a+i a b-i b a+b^{2}}_{x}-2 b t \leq 1_{H}, \quad t \in \mathbb{R}
\end{aligned}
$$

so $0 \leq x-2 b t \leq 1_{H}$ for all $t \in \mathbb{R}$. This implies that $b=0$, and therefore $v=a$ is self-adjoint. Then $\left\|\left(v-i t 1_{H}\right)^{*}\left(v-i t 1_{H}\right)\right\|=\left\|v-i t 1_{H}\right\|^{2} \leq 1+t^{2}$ for all $t \in \mathbb{R}$. Since v is self-adjoint, $\left(v-i t 1_{H}\right)^{*}\left(v-i t 1_{H}\right)=$ $v^{2}+t^{2} 1_{H}$, so we get
$0 \leq v^{2}+t^{2} 1_{H} \leq 1_{H}+t^{2} 1_{H} \Rightarrow 0 \leq v^{2} \leq 1_{H} \Rightarrow\|v\|^{2}=\left\|v^{*} v\right\|=\left\|v^{2}\right\| \leq 1 \Rightarrow\|v\| \leq 1 \Rightarrow-1_{H} \leq v \leq 1_{H}$, completing the proof.

Proposition 1.9. Let A, B be unital C^{*}-algebras. If $\varphi: A \rightarrow B$ is unital (i.e., $\varphi\left(1_{A}\right)=1_{B}$) and contractive (respectively, c.c.), then φ is positive (respectively, c.p.).

Proof (Arveson, 1969). If $0 \leq a \leq 1_{A}$, then $0 \leq 1_{A}-a \leq 1_{A}$. Then by Lemma 1.8, $\left\|\left(1_{A}-a\right)-i t 1_{A}\right\| \leq$ $\sqrt{1+t^{2}}$ for all $t \in \mathbb{R}$. Since φ is contractive, $\left\|\varphi\left(\left(1_{A}-a\right)-i t 1_{A}\right)\right\| \leq \sqrt{1+t^{2}}$ for all $t \in \mathbb{R}$. As $\varphi\left(1_{A}\right)=1_{B}$, this becomes

$$
\left\|\left(1_{B}-\varphi(a)\right)-i t 1_{B}\right\| \leq \sqrt{1+t^{2}}
$$

for all $t \in \mathbb{R}$. Using Lemma 1.8 again, we get $-1_{B} \leq 1_{B}-\varphi(a) \leq 1_{B}$, implying $\varphi(a) \geq 0$. For an arbitrary $a \geq 0$, we have $0 \leq \frac{a}{\|a\|} \leq 1_{A}$. The argument above shows that $\varphi\left(\frac{a}{\|a\|}\right) \geq 0$, i.e., $\varphi(a) \geq 0$.

Recall the GNS representation for positive linear functionals:
Let A be a unital C^{*}-algebra. If $\varphi: A \rightarrow \mathbb{C}$ is positive and linear, then there exists a Hilbert space K and a unital ${ }^{*}$-representation $\pi: A \rightarrow B(K)$ and $\xi \in K$ with $\|\xi\|^{2}=\|\varphi\|$ such that

$$
\varphi(a)=\langle\pi(a) \xi, \xi\rangle=\xi^{*} \pi(a) \xi, \quad a \in A
$$

where $\xi: \mathbb{C} \rightarrow K$ is given by $\alpha \mapsto \alpha \xi$ and ξ^{*} is the adjoint map $K \rightarrow \mathbb{C}$. Moreover, $K=\overline{\pi(A) \xi}^{\|\cdot\|}$, i.e., ξ is a cyclic vector for π (or, π is a cyclic representation with cyclic vector ξ).

Theorem 1.10 (Stinespring, 1955). Let A be a unital C^{*}-algebra, and let H be a Hilbert space. If $\varphi: A \rightarrow$ $B(H)$ is completely positive linear map, then there exists a Hilbert space K, a unital *-representation $\pi: A \rightarrow B(K)$ and $V: H \rightarrow K$ such that

$$
\varphi(a)=V^{*} \pi(a) V, \quad a \in A
$$

In particular, $\|\varphi\|=\left\|V^{*} V\right\|=\|\varphi(1)\|$, which, applied to φ_{n} implies than $\left\|\varphi_{n}\right\|=\left\|\varphi_{n}\left(1_{M_{n}(A)}\right)\right\|=\|\varphi(1)\|$ for all $n \geq 1$, so $\|\varphi\|_{\mathrm{cb}}=\|\varphi\|$.

Proof. Define a sesquilinear form $\langle\cdot, \cdot\rangle_{\varphi}$ on (the algebraic tensor product $A \odot H$) by

$$
\begin{aligned}
\left\langle\sum_{i=1}^{n} a_{i} \otimes \xi_{i}, \sum_{j=1}^{m} b_{j} \otimes \eta_{j}\right\rangle_{\varphi} & :=\langle\underbrace{\left[\varphi\left(b_{j}^{*} a_{i}\right)\right]}_{\in M_{m, n}(B(H))}\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right],\left[\begin{array}{c}
\eta_{1} \\
\vdots \\
\eta_{m}
\end{array}\right]\rangle_{H^{m}} \\
& =\sum_{i, j}\left\langle\varphi\left(b_{j}^{*} a_{i}\right) \xi_{i}, \eta_{j}\right\rangle_{H}
\end{aligned}
$$

Note that $\langle\cdot, \cdot\rangle_{\varphi}$ is positive semidefinite, i.e.,

$$
\left\langle\sum_{i=1}^{n} a_{i} \otimes \xi_{i}, \sum_{i=1}^{n} a_{i} \otimes \xi_{i}\right\rangle_{\varphi}:=\langle\underbrace{\left[\varphi\left(a_{j}^{*} a_{i}\right)\right]}_{=\varphi_{n}\left(\left[a_{j}^{*} a_{i}\right]\right)}\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right],\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right]_{H^{n}} \geq 0
$$

since φ_{n} is positive $\operatorname{and}\left[a_{j}^{*} a_{i}\right] \in M_{n}(A)_{+}$, as we have

$$
\left[a_{j}^{*} a_{i}\right]=\underbrace{\left[\begin{array}{c}
a_{1}^{*} \\
\vdots \\
a_{n}^{*}
\end{array}\right]}_{\in M_{n, 1}(A)} \underbrace{\left[a_{1}, \ldots, a_{n}\right]}_{\in M_{1, n}(A)}=c^{*} c \geq 0
$$

where $c=\left[a_{1}, \ldots, a_{n}\right]$. Let

$$
N=\left\{\sum_{i=1}^{n} a_{i} \otimes \xi_{i} \in A \odot H \mid\left\langle\sum_{i=1}^{n} a_{i} \otimes \xi_{i}, \sum_{i=1}^{n} a_{i} \otimes \xi_{i}\right\rangle_{\varphi}=0, n \in \mathbb{N}\right\}
$$

Note that N is a left A-module, i.e., if $a \in A$ and $\sum_{i=1}^{n} a_{i} \otimes \xi_{i} \in N$, then

$$
a\left(\sum_{i=1}^{n} a_{i} \otimes \xi_{i}\right):=\sum_{i=1}^{n} a a_{i} \otimes \xi_{i} \in N
$$

This follows from the following:
Claim. If $x \in A \odot H, a \in A$, then

$$
\langle a x, a x\rangle_{\varphi} \leq\|a\|^{2}\langle x, x\rangle_{\varphi} .
$$

Proof of claim. Let $x=\sum_{i=1}^{n} a_{i} \otimes \xi_{i} \in A \odot H$, for some $n \in \mathbb{N}$. Set $c=\left[a_{1}, \ldots, a_{n}\right] \in M_{1, n}(A)$, $\xi=\left[\xi_{1}, \ldots, \xi_{n}\right] \in H^{n}$. Then

$$
\begin{aligned}
\left\langle\varphi_{n}\left(c^{*} c\right) \xi, \xi\right\rangle & =\left\langle\left[\begin{array}{ccc}
\varphi\left(a_{1}^{*} a_{1}\right) & \cdots & \varphi\left(a_{1}^{*} a_{n}\right) \\
\vdots & & \vdots \\
\varphi\left(a_{n}^{*} a_{1}\right) & \cdots & \varphi\left(a_{n}^{*} a_{n}\right)
\end{array}\right]\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right],\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right]\right\rangle_{H^{n}} \\
& =\sum_{i, j}\left\langle\varphi\left(a_{j}^{*} a_{i}\right) \xi_{i}, \xi_{j}\right\rangle_{H}=\langle x, x\rangle_{\varphi}
\end{aligned}
$$

Similarly, we see that

$$
\left\langle\varphi_{n}\left(c^{*} a^{*} a c\right) \xi, \xi\right\rangle=\sum_{i, j}\left\langle\varphi\left(a_{j}^{*} a^{*} a a_{i}\right) \xi_{i}, \xi_{j}\right\rangle_{H}=\langle a x, a x\rangle_{\varphi} .
$$

Now, $c^{*} a^{*} a c \leq\|a\|^{2} c^{*} c$, so $\varphi_{n}\left(c^{*} a^{*} a c\right) \leq \varphi_{n}\left(c^{*} c\right)\|a\|^{2}$ (since φ_{n} is positive), hence $\left\langle\varphi_{n}\left(c^{*} a^{*} a c\right) \xi, \xi\right\rangle \leq$ $\|a\|^{2}\left\langle\varphi_{n}\left(c^{*} c\right) \xi, \xi\right\rangle$. Done!

Now consider $A \odot H / N$. Then $\langle\cdot, \cdot\rangle_{\varphi}$ is an inner product on it. Let K be the Hilbert space completion of $\left(A \odot H / N,\langle\cdot, \cdot\rangle_{\varphi}\right)$. Given $a \in A$, define $\pi_{0}(a): A \odot H / N \rightarrow A \odot H / N$ by

$$
\left[\sum_{i=1}^{n} a_{i} \otimes \xi_{i}\right] \mapsto\left[\sum_{i=1}^{n} a a_{i} \otimes \xi_{i}\right]
$$

$\pi_{0}(a)$ is a well-defined linear map (since N is a left A-module). Now, by the Claim,

$$
\left\|\pi_{0}(a)\left(\left[\sum_{i=1}^{n} a_{i} \otimes \xi_{i}\right]\right)\right\|^{2}=\left\|\left[\sum_{i=1}^{n} a a_{i} \otimes \xi_{i}\right]\right\|^{2} \leq\|a\|^{2}\left\|\left[\sum_{i=1}^{n} a_{i} \otimes \xi_{i}\right]\right\|^{2}
$$

So $\left\|\pi_{0}(a)\right\| \leq\|a\|$, i.e., $\pi_{0}(a)$ is a bounded operator on $A \odot H / N$. Hence we can extend it uniquely to $\pi(a) \in$ $B(K)$, satisfying $\|\pi(a)\| \leq\|a\|$. We thus obtain a map $\pi: A \rightarrow B(K)$, satisfying $\|\pi(a)\| \leq\|a\|, \forall a \in A$.

Note now that π is a unital *-homomorphism. Indeed,

- $\pi(1)\left(\left[\sum a_{i} \otimes \xi_{i}\right]\right)=\left[\sum 1 \cdot a_{i} \otimes \xi_{i}\right]=\left[\sum a_{i} \otimes \xi_{i}\right]$ implies $\pi(1)=\operatorname{Id}_{K}$, i.e., π is unital.
- $\pi(a b)\left(\left[\sum a_{i} \otimes \xi_{i}\right]\right)=\left[\sum a b a_{i} \otimes \xi_{i}\right]=\pi(a)\left(\left[\sum b a_{i} \otimes \xi_{i}\right]\right)=\pi(a) \pi(b)\left(\left[\sum a_{i} \otimes \xi_{i}\right]\right)$, implying $\pi(a b)=$ $\pi(a) \pi(b)$.
- $\pi\left(a^{*}\right)=\pi(a)$ by similar computations.

Now let $V: H \rightarrow K$ be defined by

$$
V(\xi)=[1 \otimes \xi], \quad \xi \in H
$$

Let $a \in A$. Then for all $\xi, \eta \in H$,

$$
\begin{aligned}
\left\langle V^{*} \pi(a) V \xi, \eta\right\rangle_{H} & =\langle\pi(a) V \xi, V \eta\rangle_{K} \\
& =\langle\pi(a)[1 \otimes \xi],[1 \otimes \eta]\rangle_{K} \\
& =\langle[a \otimes \xi],[1 \otimes \eta]\rangle_{K} \\
& =\left\langle\varphi\left(1^{*} a\right) \xi, \eta\right\rangle_{H}=\langle\varphi(a) \xi, \eta\rangle_{H}
\end{aligned}
$$

implying $V^{*} \pi(a) V=\varphi(a), \forall a \in A$. It follows that $\left\|V^{*} V\right\|=\|\varphi(1)\|$. On the other hand, for all $a \in A$,

$$
\|\varphi(a)\|=\left\|V^{*} \pi(a) V\right\| \leq\|V\|^{2}\|\pi(a)\| \leq\|a\|\|V\|^{2}
$$

so $\|\varphi\| \leq\|V\|^{2}=\|\varphi(1)\| \leq\|\varphi\|$, hence $\|\varphi\|=\|\varphi(1)\|$. So $\|\varphi\|=\|\varphi(1)\|=\left\|V^{*} V\right\|$. Applying this to the c.p. map φ_{n}, we get $\left\|\varphi_{n}\right\|=\left\|\varphi_{n}(1)\right\|=\|\varphi(1)\|=\|\varphi\|$, hence φ is c.b. with $\|\varphi\|_{\text {cb }}=\|\varphi\|$.

Remark 1.11 (Remark 1.5.5 [BO]). (π, K, V) is called a Stinespring dilation of φ. If φ is unital, then $V^{*} V=\varphi(1)=1$, so V is an isometry. The projection $V V^{*} \in B(K)$ is called the Stinespring projection. A Stinespring dilation is not unique. We may assume that (π, K, V) is minimal, in the sense that

$$
\overline{\pi(A) V H}{ }^{\|\cdot\|}=K .
$$

(This condition holds for the construction above.) Note that under the minimality assumption, a Stinespring dilation is unique up to unitary equivalence (Paulsen, Proposition 4.2).

Lecture 2, GOADyn

September 9, 2021

Multiplicative domains

Proposition 2.1 (Proposition 1.5.7 [BO]). Let A, B be C^{*}-algebras and $\varphi: A \rightarrow B$ be c.c.p. (contractive c.p.) Then the following holds:
(1) (Schwarz inequality): $\varphi(a)^{*} \varphi(a) \leq \varphi\left(a^{*} a\right)$ for all $a \in A$.
(2) (Bimodule property): Given $a \in A$, if $\varphi(a)^{*} \varphi(a)=\varphi\left(a^{*} a\right)$, then $\varphi(b a)=\varphi(b) \varphi(a)$ for all $b \in A$, respectively, if $\varphi(a) \varphi(a)^{*}=\varphi\left(a a^{*}\right)$, then $\varphi(a b)=\varphi(a) \varphi(b)$ for all $b \in A$.
(3) $A_{\varphi}=\left\{a \in A: \varphi(a)^{*} \varphi(a)=\varphi\left(a^{*} a\right)\right.$ and $\left.\varphi(a) \varphi(a)^{*}=\varphi(a a)^{*}\right\}$ is a C^{*}-subalgebra of A.

Proof. (1) Let $B \subset B(H)$ be a faithful *-representation and (π, K, V) a minimal Stinespring dilation of $\varphi: A \rightarrow B \subset B(H)$. Then, for all $a \in A$,

$$
\varphi\left(a^{*} a\right)-\varphi(a)^{*} \varphi(a)=V^{*} \pi(a)^{*}\left(1_{K}-V V^{*}\right) \pi(a) V \geq 0
$$

since $\|V\| \leq 1$.
(2) Let $a \in A$ with $\varphi\left(a^{*} a\right)=\varphi(a)^{*} \varphi(a)$. This is equivalent to $\left(1_{K}-V V^{*}\right)^{1 / 2} \pi(a) V=0$. Then $\forall b \in A$,

$$
\varphi(b a)-\varphi(b) \varphi(a)=V^{*} \pi(b)\left(1_{K}-V V^{*}\right) \pi(a) V=0
$$

The other statement follows similarly.
(3) Follows from (2).

Definition 2.2 (Definition 1.5.8[BO]). Let $\varphi: A \rightarrow B$ be a c.p. map. The C^{*}-algebra A_{φ} is called the multiplicative domain of φ.

Note that A_{φ} is the largest C^{*}-subalgebra C of A such that $\left.\varphi\right|_{C}$ is a *-homomorphism.
Conditional expectations (important examples of c.c.p. maps)
Definition 2.3 (Definition 1.5.9[BO]). Let $B \subset A$ be (unital) C^{*}-algebras (if they are unital, then $1_{B}=1_{A}$ does not necessarily hold).

- A projection from A onto B is a linear map $E: A \rightarrow B$ such that $E(b)=b$, for all $b \in B$.
- A conditional expectation from A onto B is a c.c.p. projection $E: A \rightarrow B$ onto such that $E\left(b x b^{\prime}\right)=$ $b E(x) b^{\prime}$, for all $x \in A, b, b^{\prime} \in B$, i.e., E is a B-bimodule map.

Theorem 2.4 (Tomiyama, Theorem 1.5.10[BO]). Let $B \subset A$ be (unital) C^{*}-algebras and $E: A \rightarrow B$ be a projection onto. The following are equivalent:
(1) E is a conditional expectation.
(2) E is c.c.p.
(3) E is contractive.

Proof. Clearly $(1) \Rightarrow(2) \Rightarrow(3)$.
We show $(3) \Rightarrow(1)$. By passing to second duals, we may assume that A and B are von Neumann algebras with units 1_{A} and 1_{B}, respectively (again, $1_{A}=1_{B}$ may not be true). (One needs to check that $E: A \rightarrow B$ being a contractive projection implies that $E^{* *}: A^{* *} \rightarrow B^{* *}$ is a contractive projection.)

First, we prove E is a B-bimodule map. Since von Neumann algebras are the norm-closed linear span of their projections, it suffices to check the module property on projections. Let $p \in B$ be a projection, and set $p^{\perp}=1_{A}-p$. For every $x \in A, t \in \mathbb{R}$,

$$
\begin{align*}
(1+t)^{2}\left\|p E\left(p^{\perp} x\right)\right\|^{2} & =\left\|p E\left(p^{\perp} x+t p E\left(p^{\perp} x\right)\right)\right\|^{2} \\
& \leq\left\|p^{\perp} x+\operatorname{tpE}\left(p^{\perp} x\right)\right\|^{2} \\
& \stackrel{(\star)}{\leq}\left\|p^{\perp} x\right\|^{2}+t^{2}\left\|p E\left(p^{\perp} x\right)\right\|^{2} \tag{2.3}
\end{align*}
$$

since $B \ni p E\left(p^{\perp} x\right)=E\left(p E\left(p^{\perp} x\right)\right)$ and E is contractive. Inequality (\star) follows from the following computations: Set $y=p^{\perp} x+t p E\left(p^{\perp} x\right)$, so

$$
\begin{aligned}
\|y\|^{2} & =\left\|y^{*} y\right\| \\
& =\left\|x^{*} p^{\perp} x+t^{2} E\left(p^{\perp} x\right)^{*} p E\left(p^{\perp} x\right)\right\| \\
& \leq\left\|x^{*} p^{\perp} x\right\|+t^{2}\left\|E\left(p^{\perp} x\right)^{*} p E\left(p^{\perp} x\right)\right\| \\
& =\left\|p^{\perp} x\right\|^{2}+t^{2}\left\|p E\left(p^{\perp} x\right)\right\|^{2}
\end{aligned}
$$

(using $p^{\perp} p=0=p p^{\perp}$ at second equality), so (\star) is justified. By (2.3) we therefore have

$$
\left\|p E\left(p^{\perp} x\right)\right\|^{2}+2 t\left\|p E\left(p^{\perp} x\right)\right\|^{2} \leq\left\|p^{\perp} x\right\|^{2}
$$

for all $t \in \mathbb{R}$, so $p E\left(p^{\perp} x\right)=0$, for all projections $p \in B$ and all $x \in A$. In particular, for $p=1_{B}$ we get

$$
0=1_{B} \underbrace{E\left(1 \frac{\perp}{B} x\right)}_{\in B}=E\left(1 \frac{\perp}{B} x\right), \quad x \in A .
$$

Respectively, for any projection $p \in B, 1_{B}-p$ is also a projection in B, hence

$$
\left(1_{B}-p\right) E\left(\left(1_{B}-p\right)^{\perp} x\right)=0
$$

for all $x \in A$. But $\left(1_{B}-p\right)^{\perp}=1_{A}-1_{B}+p=1_{B}^{\perp}+p$, implying $E\left(\left(1_{B}-p\right)^{\perp} x\right)=E\left(\left(1_{B}^{\perp}+p\right) x\right)=E(p x)$, since $E\left(1 \frac{\perp}{B} x\right)=0$ from above. Hence, for all $x \in A,\left(1_{B}-p\right) E(p x)=0$ which implies

$$
E(p x)=1_{B} E(p x)=p E(p x)=p E\left(x-p^{\perp} x\right)=p E(x)
$$

since $p E\left(p^{\perp} x\right)=0$ from above. Therefore we have proved that $E(p x)=p E(x)$, for all projections $p \in B$ and all $x \in A$. Similarly, $E(x p)=E(x) p$, for all projections $p \in B$ and all $x \in A$. We conclude that E is a B-bimodule map.
Note that E is a unital map, since $b E\left(1_{A}\right)=E(b)=b$, for all $b \in B$, so $E\left(1_{A}\right)=1_{B}$. Since E is then a unital contraction $(\|E\|=1), E$ is positive (by Proposition 1.10, Lecture 1).

It remains to show that E is c.p. For this, we will use the following:
Lemma 2.5. Let A be a unital C^{*}-algebra, let $n \in \mathbb{N}$ and $x \in M_{n}(A)$. Then $x \in M_{n}(A)_{+}$if and only if $b^{*} x b \in A_{+}$for all $b \in M_{n, 1}(A)$.

Proof. " \Rightarrow ": Well-known.
" $\Leftarrow "$: Suppose by contradiction that $x=\left[x_{i j}\right]$ is not positive in $M_{n}(A)$. Set $B=C^{*}\left(x_{i j}, 1: 1 \leq i, j \leq\right.$ $n) \subset A$. Then B is separable and unital, $x \in M_{n}(B)$ and x is not positive in $M_{n}(B)$. Choose a faithful
state $\rho \in S(B)$ and let $\left(\pi_{\rho}, H_{\rho}, \xi_{\rho}\right)$ be the corresponding GNS representation. Then $\pi_{\rho}: B \rightarrow B\left(H_{\rho}\right)$ is faithful (inj), and so is also $\left(\pi_{\rho}\right)_{n}: M_{n}(B) \rightarrow B\left(H_{\rho}^{n}\right)$. Hence $\left(\pi_{\rho}\right)_{n}(x)$ is not positive in $B\left(H_{\rho}^{n}\right)$. Note that

$$
K=\left\{\left[\begin{array}{c}
\pi_{\rho}\left(b_{1}\right) \xi_{\rho} \\
\vdots \\
\pi_{\rho}\left(b_{n}\right) \xi_{\rho}
\end{array}\right]: b_{j} \in B\right\} \subset H_{\rho}^{n}
$$

is dense. Hence $\left\langle\left(\pi_{\rho}\right)_{n}(x) \xi, \xi\right\rangle \nsupseteq 0$ for some

$$
\xi=\left[\begin{array}{c}
\pi_{\rho}\left(b_{1}\right) \xi_{\rho} \\
\vdots \\
\pi_{\rho}\left(b_{n}\right) \xi_{\rho}
\end{array}\right] \in K
$$

By letting

$$
b=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right] \in M_{n, 1}(B) \subset M_{n, 1}(A)
$$

and observing that

$$
\left\langle\left(\pi_{\rho}\right)_{n}(x) \xi, \xi\right\rangle=\sum_{i, j}\left\langle\pi_{\rho}\left(b_{j}^{*} x_{j i} b_{i}\right) \xi_{\rho}, \xi_{\rho}\right\rangle=\left\langle\pi_{\rho}\left(b^{*} x b\right) \xi_{\rho}, \xi_{\rho}\right\rangle,
$$

we now get a contradiction.

We return to the proof of the statement that $E: A \rightarrow B$ is completely positive: Take $x \in M_{n}(A)_{+}$. We must show that $E_{n}(x) \in M_{n}(B)_{+}$. By the above lemma, it is enough to show that

$$
b^{*} E_{n}(x) b \in B_{+} \quad \text { for all } b=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right] \in M_{n, 1}(B)
$$

We have

$$
b^{*} E_{n}(x) b=\sum_{i, j} b_{j}^{*} E\left(x_{j i}\right) b_{i}=\sum_{i, j} E\left(b_{j}^{*} x_{j i} b_{i}\right)=E\left(\sum_{i, j} b_{j}^{*} x_{j i} b_{i}\right)=E\left(b^{*} x b\right) \geq 0
$$

The proof is complete.

Lemma 2.6 (Lemma 1.5.11[BO]). Let M be a von Neumann algebra with a faithful, normal, tracial state τ. Let $1_{M} \in N \subset M$ be a von Neumann subalgebra. Then there exists a unique normal conditional expectation $E: M \rightarrow N$ that is τ-preserving, i.e., $\tau \circ E=\tau$.

Proof. Let $a, y \in M$. Let $a=u|a|$ be the polar decomposition of a in M. Note that $u,|a| \in M$. (The fact that $|a| \in M$ is clear, while $u \in M$, since $M \ni u|a|^{1 / n} \rightarrow u$ SOT.)

Claim 1. $|\tau(y a)| \leq\|y\| \tau(|a|)$. Indeed,

$$
\begin{aligned}
|\tau(y a)|=\mid \tau(y u|a|) & =\left|\tau\left(y u|a|^{1 / 2}|a|^{1 / 2}\right)\right| \\
& \stackrel{(\mathbf{1})}{\leq} \tau(y u \underbrace{|a|^{1 / 2}|a|^{1 / 2}}_{=|a|} u^{*} y^{*})^{1 / 2} \tau(|a|)^{1 / 2} \\
& =\tau\left(y u|a|(y u)^{*}\right)^{1 / 2} \tau(|a|)^{1 / 2} \\
& \stackrel{(\mathbf{2})}{\leq}\|y u\| \tau(|a|) \\
& \stackrel{(\mathbf{3})}{\leq}\|y\| \tau(|a|) .
\end{aligned}
$$

(1) Here we use the Cauchy-Schwarz inequality for a positive linear functional $\varphi: A \rightarrow \mathbb{C}$:

$$
\left|\varphi\left(x^{*} z\right)\right|^{2} \leq \varphi\left(z^{*} z\right) \varphi\left(x^{*} x\right), \quad x, z \in A
$$

obtained by defining $\langle x, z\rangle_{\varphi}:=\varphi\left(z^{*} x\right)$ and using the Cauchy-Schwarz inequality for positive definite sesquilinear forms. Here $x=\left(y u|a|^{1 / 2}\right)^{*}, z=|a|^{1 / 2}$.
(2) With $w=y u$, we have $\tau\left(w|a| w^{*}\right)=\tau\left(w^{*} w|a|\right)=\tau\left(|a|^{1 / 2} w^{*} w|a|^{1 / 2}\right) \leq\left\|w^{*} w\right\| \tau(|a|)=\|w\|^{2} \tau(|a|)$.
(3) u is a partial isometry, so $u^{*} u$ is a projection, implying $\|u\|=1$.

For each $a \in N$, define $\tau_{a}: N \rightarrow \mathbb{C}$ by

$$
\tau_{a}(y)=\tau(y a), \quad y \in N
$$

Then by Claim 1, $\left|\tau_{a}(y)\right|=|\tau(y a)| \leq\|y\| \tau(|a|)$, implying $\tau_{a} \in N^{*}$ with $\left\|\tau_{a}\right\| \leq \tau(|a|)$. In fact, $\left\|\tau_{a}\right\|=\tau(|a|)$ (since $\left|\tau_{a}\left(u^{*}\right)\right|=\left|\tau\left(u^{*} a\right)\right|=\tau(|a|)$, since $u^{*} a=|a|$ and $\left\|u^{*}\right\|=\|u\|=1$).
Note that τ_{a} is normal. Suppose first that $a \geq 0$. Then τ_{a} is a positive linear functional, so to prove normality, it suffices to show that if $0 \leq y_{\alpha} \nearrow y \mathrm{SOT}$, then

$$
\tau\left(y_{\alpha} a\right)=\tau_{a}\left(y_{\alpha}\right) \rightarrow \tau_{a}(y)=\tau(y a) .
$$

This follows from normality of τ. For the general case, an arbitrary $a \in N$ is a linear combination of 4 positive elements, and a linear combination of normal functionals is normal.

Claim 2. $\left\{\tau_{a}: a \in N\right\}$ is a norm-dense subspace of N_{*}.
If it were not norm-dense, then by Hahn-Banach, there would exist $0 \neq n \in\left(N_{*}\right)^{*}=N$ such that $\tau_{a}(n)=0$ for all $a \in N$. In particular, $\tau_{n^{*}}(n)=0$ implying $\tau\left(n^{*} n\right)=0$. But τ is faithful, so $n=0$, contradiction!

Construct $E: M \rightarrow N$ as follows:
For all $x \in M$, let $E(x)\left(\tau_{a}\right):=\tau(x a)$, for all $a \in N$. Recall that

$$
\left|E(x)\left(\tau_{a}\right)\right|=|\tau(x a)| \leq\|x\| \tau(|a|)=\|x\|\left\|\tau_{a}\right\|
$$

where the latter equality was shown above. Hence $\|E(x)\| \leq\|x\|$. Use Claim 2 to conclude that $E(x)$ extends uniquely to a linear functional (still denoted by $E(x)$) on N_{*}, which is bounded with $\|E(x)\| \leq\|x\|$. So $E: M \rightarrow N$ is a well-defined contraction. Note also that for all $x \in M$ and $a \in N$,

$$
\begin{equation*}
\tau(E(x) a)=E(x)\left(\tau_{a}\right)=\tau(x a) \tag{2.4}
\end{equation*}
$$

In particular, for $a=1_{M}$, we get $\tau \circ E=\tau$ (E is τ-preserving). Next we show that E is a projection, i.e., for all $x \in M, E(E(x))=E(x)$. Indeed, for all $a \in N$,

$$
E(E(x))\left(\tau_{a}\right)=\tau(E(x) a)=\tau(x a)=E(x)\left(\tau_{a}\right)
$$

by definition of $E(x)$ and (2.4). By uniqueness, $E(E(x))=E(x)$.
Since E is a contractive projection, it follows from Tomiyama's theorem that E is a conditional expectation.
Furthermore, we show that E is normal, i.e., for all $x \in M_{+}$and $0 \leq x_{\alpha} \nearrow x \operatorname{SOT}, \sup E\left(x_{\alpha}\right)=E(x)$. For this it suffices to show that for all $a \in N$,

$$
\tau(E(x) a)=\tau\left(\left(\sup _{\alpha} E\left(x_{\alpha}\right)\right) a\right)
$$

which follows from normality of τ.
Now assume that E^{\prime} is another τ-preserving conditional expectation. Then for all $x \in M, a \in N$,

$$
\tau\left(E^{\prime}(x) a\right)=\tau\left(E^{\prime}(x a)\right)=\tau(x a)=\tau(E(x a))=\tau(E(x) a)
$$

This implies $E=E^{\prime}$.

Examples 2.7. (1) Let $D_{n}(\mathbb{C}) \subset M_{n}(\mathbb{C})$ be the subalgebra of diagonal matrices. Then the conditional expectation $E: M_{n}(\mathbb{C}) \rightarrow D_{n}(\mathbb{C})$ is given by

$$
E\left(\left[a_{i j}\right]\right)=\left[\begin{array}{ccc}
a_{11} & & 0 \\
& \ddots & \\
0 & & a_{n n}
\end{array}\right]
$$

(2) Let $M=M_{m}(\mathbb{C}), N=M_{n}(\mathbb{C}), m, n \in \mathbb{N}$. The conditional expectation $E: M \otimes N \rightarrow M \otimes 1_{n}$ is given by

$$
E(x \otimes y)=\int_{\mathcal{U}\left(\mathbb{C}^{n}\right)} x \otimes u^{*} y u d u, \quad x \in M, y \in N
$$

where $\mathcal{U}\left(\mathbb{C}^{n}\right)$ is the group of unitary operators on \mathbb{C}^{n} (compact in norm) and $d u$ is the Haar measure on $\mathcal{U}\left(\mathbb{C}^{n}\right)$.

Lecture 3, GOADyn

September 14, 2021

Proposition 3.1 (Proposition 1.5.12, $[\mathrm{BO}])$. Let A be a C^{*}-algebra and $\left(e_{i j}\right)$ be matrix units in $M_{n}(\mathbb{C})$. $A \operatorname{map} \varphi: M_{n}(\mathbb{C}) \rightarrow A$ is c.p. if and only if $\left[\varphi\left(e_{i j}\right)\right] \in M_{n}(A)_{+}$. In other words,

$$
\mathrm{CP}\left(M_{n}(\mathbb{C}), A\right) \ni \varphi \longmapsto\left[\varphi\left(e_{i j}\right)\right] \in M_{n}(A)_{+}
$$

is a bijective correspondence. (Here $\operatorname{CP}\left(M_{n}(\mathbb{C}), A\right)$ denotes the set of c.p. maps from $M_{n}(\mathbb{C})$ into A.)
Proof. " \Rightarrow ": Suppose that $\varphi: M_{n}(\mathbb{C}) \rightarrow A$ is c.p., in particular, φ is n-positive. Note that $e:=\left[e_{i j}\right] \in$ $\left(M_{n}\left(M_{n}(\mathbb{C})\right)\right)_{+}$, since we can show that

$$
e^{2}=n e
$$

Since e is self adjoint, this implies that e is positive. To prove (\star), note that for all $1 \leq i, j \leq n$,

$$
\left(e^{2}\right)_{i j}=\sum_{k=1}^{n} \underbrace{e_{i k} e_{k j}}_{e_{i j}}=n e_{i j}
$$

as wanted. Since φ_{n} is positive, $\left[\varphi\left(e_{i j}\right)\right]=\varphi_{n}\left(\left[e_{i j}\right]\right) \in M_{n}(A)_{+}$.
$" \Leftarrow "$: Assume that $a=\left[\varphi\left(e_{i j}\right)\right] \in M_{n}(A)_{+}$. Let $a^{1 / 2}:=\left[b_{i j}\right]$. Then $\varphi\left(e_{i j}\right)=\sum_{k=1}^{n} b_{k i}^{*} b_{k j}$. Let $A \subset B(H)$ be a faithful ${ }^{*}$-representation and define $V: H \rightarrow \ell_{n}^{2} \otimes \ell_{n}^{2} \otimes H$ by

$$
V \xi=\sum_{j, k=1}^{n} \zeta_{j} \otimes \zeta_{k} \otimes b_{k j} \xi, \quad \xi \in H
$$

where $\left(\zeta_{j}\right)_{j=1}^{n}$ is the canonical unit vector basis in ℓ_{n}^{2}. Then for $T=\left[t_{i j}\right] \in M_{n}(\mathbb{C})$, we have for all $\xi, \eta \in H$,

$$
\begin{aligned}
\left\langle V^{*}\left(T \otimes 1_{n} \otimes 1_{B(H)}\right) V \eta, \xi\right\rangle & =\langle(T \otimes 1 \otimes 1) V \eta, V \xi\rangle \\
& =\left\langle(T \otimes 1 \otimes 1) \sum_{j, k} \zeta_{j} \otimes \zeta_{k} \otimes b_{k j} \eta, \sum_{i, l} \zeta_{i} \otimes \zeta_{l} \otimes b_{l i} \xi\right\rangle \\
& =\sum_{i, j, k, l}\left\langle T \zeta_{j} \otimes \zeta_{k} \otimes b_{k j} \eta, \zeta_{i} \otimes \zeta_{\ell} \otimes b_{\ell i} \xi\right\rangle \\
& =\sum_{i, j, k, l} \underbrace{\left\langle T \zeta_{j}, \zeta_{i}\right\rangle}_{t_{i j}} \underbrace{\left\langle\zeta_{k}, \zeta_{\ell}\right\rangle}_{\substack{1 \text { if } k=\ell, 0 \text { else }}}\left\langle b_{k j} \eta, b_{\ell i} \xi\right\rangle \\
& =\sum_{i, j=1}^{n} t_{i j}\left\langle\sum_{k=1}^{n} b_{k i}^{*} b_{k j} \eta, \xi\right\rangle \\
& =\left\langle\varphi\left(\sum_{i, j} t_{i j} e_{i j}\right) \eta, \xi\right\rangle \\
& =\langle\varphi(T) \eta, \xi\rangle .
\end{aligned}
$$

Hence $\varphi(T)=V^{*}(T \otimes 1 \otimes 1) V$ for all $T \in M_{n}(\mathbb{C})$. Clearly, φ is positive and for all $n \geq 1$, if

$$
V_{n}=\left(\begin{array}{lll}
V & & 0 \\
& \ddots & \\
0 & & V
\end{array}\right)
$$

then

$$
\varphi_{n}(T)=\left(\begin{array}{ccc}
V^{*} \varphi(T) V & & 0 \\
& \ddots & \\
0 & & V^{*} \varphi(T) V
\end{array}\right)=V_{n}^{*}\left(\varphi \otimes 1_{n}\right)(T) V_{n}
$$

which is positive. Hence φ is c.p.

Example 3.2 (Example 1.5.19, $[\mathrm{BO}])$. Let $a_{1}, \ldots, a_{n} \in A$, and define $\varphi: M_{n}(\mathbb{C}) \rightarrow A$ by

$$
\varphi\left(e_{i j}\right)=a_{i} a_{j}^{*}
$$

By Proposition 3.1, φ is c.p. since

$$
\left[\varphi\left(e_{i j}\right)\right]=\left[\begin{array}{ccc}
a_{1} a_{1}^{*} & \cdots & a_{1} a_{n}^{*} \\
\vdots & & \vdots \\
a_{n} a_{1}^{*} & \cdots & a_{n} a_{n}^{*}
\end{array}\right]=\left[\begin{array}{cc}
a_{1} & \\
\vdots & 0 \\
a_{n} &
\end{array}\right]\left[\begin{array}{cc}
a_{1} & \\
\vdots & 0 \\
a_{n} &
\end{array}\right]^{*} \geq 0
$$

Remark 3.3. Let A be a C^{*}-algebra, $n \in \mathbb{N}$. A linear map $\varphi: M_{n}(\mathbb{C}) \rightarrow A$ is c.p. if and only if φ is n-positive.

Proof. Suppose that φ is n-positive. By Proposition 3.1, it suffices to show that $\left[\varphi\left(e_{i j}\right)\right] \in M_{n}(A)_{+}$. But $\left[\varphi\left(e_{i j}\right)\right]=\varphi_{n}\left(\left[e_{i j}\right]\right)$. We have seen in the proof of Proposition 3.1 that $\left[e_{i j}\right] \in M_{n}\left(M_{n}(\mathbb{C})\right)_{+}$. Use the fact that φ_{n} is positive to get the conclusion.

There is a similar characterization of c.p. maps from A into $M_{n}(\mathbb{C})$:
Given a linear map $\varphi: A \rightarrow M_{n}(\mathbb{C})$, define $\hat{\varphi}: M_{n}(A) \rightarrow \mathbb{C}$ by

$$
\hat{\varphi}\left(\left[a_{i j}\right]\right):=\sum_{i, j=1}^{n} \varphi\left(a_{i j}\right)_{i j}
$$

where $\varphi\left(a_{i j}\right)_{i j}$ is the $(i, j)^{\text {th }}$ entry of the matrix $\varphi\left(a_{i j}\right)$. Put differently, if $\left(\zeta_{i}\right)_{i=1}^{n}$ is the canonical ONB for $\ell_{n}^{2}, \zeta=\left[\zeta_{1}, \ldots, \zeta_{n}\right]^{T} \in\left(\ell_{n}^{2}\right)^{n}$, then

$$
\hat{\varphi}\left(\left[a_{i j}\right]\right)=\left\langle\varphi_{n}\left(\left[a_{i j}\right]\right) \zeta, \zeta\right\rangle, \quad\left[a_{i j}\right] \in M_{n}(A)
$$

Proposition 3.4 (Proposition 1.5.14, $[\mathrm{BO}])$. Let A be a unital C^{*}-algebra. A linear map $\varphi: A \rightarrow M_{n}(\mathbb{C})$ is c.p. if and only if $\hat{\varphi} \in M_{n}(A)_{+}^{*}$, meaning that $\hat{\varphi}$ is a positive (thus bounded) linear functional on $M_{n}(A)$. Moreover,

$$
\mathrm{CP}\left(A, M_{n}(\mathbb{C})\right) \ni \varphi \longmapsto \hat{\varphi} \in M_{n}(A)_{+}^{*}
$$

is a bijective correspondence.
Proof. " \Rightarrow ": This is easy: If φ is c.p., then φ_{n} is positive, so with $\zeta \in\left(\ell_{n}^{2}\right)^{n}$ defined above,

$$
\hat{\varphi}\left(\left[a_{i j}\right]\right)=\left\langle\varphi_{n}\left(\left[a_{i j}\right]\right) \zeta, \zeta\right\rangle \geq 0
$$

whenever $\left[a_{i j}\right] \in M_{n}(A)_{+}$.
" \Leftarrow ": Suppose that $\hat{\varphi}: M_{n}(A) \rightarrow \mathbb{C}$ is a positive linear functional. Let (π, H, ξ) be the GNS triple for $\hat{\varphi}$, i.e., $\pi: M_{n}(A) \rightarrow B(H)$ is a unital *-representation, $\xi \in H$ with $\|\xi\|^{2}=\|\varphi\|$ and $\hat{\varphi}(x)=\langle\pi(x) \xi, \xi\rangle$ for
all $x \in M_{n}(A)$. Let $\left(e_{i j}\right)$ be the matrix units in $M_{n}(\mathbb{C})$, which can be viewed as elements in $M_{n}(A)$, i.e., we identify

$$
e_{i j} \cong{ }_{i}\left[\begin{array}{ccc}
0 & { }^{j} & 0 \\
\vdots & 1_{A} & \vdots \\
0 & \cdots & 0
\end{array}\right] \in M_{n}(A) .
$$

Define $V: \ell_{n}^{2} \rightarrow H$ by

$$
V\left(\zeta_{j}\right)=\pi\left(e_{1 j}\right) \xi, \quad 1 \leq j \leq n
$$

extended by linearity. We claim that the following holds,

$$
\varphi(a)=V^{*} \pi\left(\left[\begin{array}{lll}
a & & 0 \\
& \ddots & \\
0 & & a
\end{array}\right]\right) V, \quad a \in A
$$

which implies that φ is c.p. For $1 \leq i, j \leq n, \varphi(a)_{i j}=\left\langle\varphi(a) \zeta_{j}, \zeta_{i}\right\rangle$. Hence

$$
\begin{aligned}
& \left\langle V^{*} \pi\left(\left[\begin{array}{lll}
a & & 0 \\
& \ddots & \\
0 & & a
\end{array}\right]\right) V \zeta_{j}, \zeta_{i}\right\rangle=\left\langle\pi\left(\left[\begin{array}{lll}
a & & 0 \\
& \ddots & \\
0 & & a
\end{array}\right]\right) V \zeta_{j}, V \zeta_{i}\right\rangle \\
& =\langle\pi\left(\left[\begin{array}{lll}
a & & 0 \\
& \ddots & \\
0 & & a
\end{array}\right]\right) \pi\left(e_{1 j}\right) \xi, \underbrace{\pi\left(e_{1 i}\right)}_{\left(\pi\left(e_{i 1}\right)\right)^{*}} \xi\rangle \\
& =\left\langle\pi\left({ }_{i}\left[\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & a & \vdots \\
0 & \cdots & 0
\end{array}\right]\right) \xi, \xi\right\rangle \\
& =\hat{\varphi}\left({ }^{2}\left[\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & a & \vdots \\
0 & \cdots & 0
\end{array}\right]\right)=\varphi(a)_{i j},
\end{aligned}
$$

as wanted.

Lemma 3.5 (Lemma 1.5.15, $[\mathrm{BO}])$. Let A be a unital C^{*}-algebra, $E \subset A$ an operator subsystem and $\psi: E \rightarrow \mathbb{C}$ be a positive linear functional. Then $\|\psi\|=\psi\left(1_{A}\right)$. Hence any norm-preserving extension of ψ to A is also positive.

Proof. Let $\varepsilon>0$. Fix $x \in E,\|x\| \leq 1$ such that $|\psi(x)| \geq\|\psi\|-\varepsilon$. Upon replacing x by αx for some $\alpha \in \mathbb{C},|\alpha|=1$, we may assume that $\psi(x)=|\psi(x)| \in \mathbb{R}$. Set

$$
y=\frac{1}{2}\left(x+x^{*}\right) .
$$

Then $\psi(y)=\frac{1}{2} \psi(x)+\frac{1}{2} \overline{\psi(x)}=\psi(x)($ since $\psi(x) \in \mathbb{R})$. As $\|y\| \leq 1$ and $y=y^{*}$, we have $y \leq 1_{A}$. Thus

$$
\|\psi\|-\varepsilon \leq \psi(x)=\psi(y) \leq \psi\left(1_{A}\right) \leq\|\psi\|
$$

As $\varepsilon>0$ was arbitrary, we conclude that $\|\psi\|=\psi\left(1_{A}\right)$.
Now, let $\tilde{\psi}: A \rightarrow \mathbb{C}, \tilde{\psi} \mid E=\psi$ and $\|\tilde{\psi}\|=\|\psi\|=\psi\left(1_{A}\right)=\tilde{\psi}\left(1_{A}\right)$. Therefore $\frac{1}{\tilde{\psi}\left(1_{A}\right)} \tilde{\psi}$ is a unital contraction, and hence positive (by Proposition 1.9, Lecture 1).

Remark 3.6. Using Proposition 3.4, one can now prove an analogue of the result in Remark 3.3, namely: If A is a unital C^{*}-algebra and $E \subset A$ is an operator subsystem, then a linear map $\varphi: E \rightarrow M_{n}(\mathbb{C})$ is c.p. if and only if φ is n-positive.

Corollary 3.7 (Corollary $1.5 .16,[\mathrm{BO}])$. Let $E \subset A$ be an operator subsystem and $\varphi: E \rightarrow M_{n}(\mathbb{C})$ a c.p. map. Then there exists a c.p. map $\psi: A \rightarrow M_{n}(\mathbb{C})$ extending φ.

Proof. If $\varphi: E \rightarrow M_{n}(\mathbb{C})$ is c.p., then $\hat{\varphi}: M_{n}(E) \rightarrow \mathbb{C}$ is positive (as $M_{n}(E) \subset M_{n}(A)$ is an operator subsystem). (The argument is the same as in the proof of " \Rightarrow " in Proposition 3.4.) By Hahn-Banach, there exists $\hat{\varphi}_{1}: M_{n}(A) \rightarrow \mathbb{C}$ such that $\left.\hat{\varphi}_{1}\right|_{M_{n}(E)}=\hat{\varphi}$ and $\left\|\hat{\varphi}_{1}\right\|=\|\hat{\varphi}\|$, yielding the following commutative diagram:

By Lemma 3.5, $\hat{\varphi}_{1}$ is positive. By Proposition 3.4, applying the 1-1 correspondence in reverse, there exists $\psi: A \rightarrow M_{n}(\mathbb{C})$ c.p. such that $\hat{\psi}=\hat{\varphi}_{1}$, which will imply that $\left.\psi\right|_{E}=\varphi$.

Arveson's extension theorem

Theorem 3.8 (Theorem 1.6.1, $[\mathrm{BO}])$. Let A be a unital C^{*}-algebra, $E \subset A$ an operator subsystem. Then every c.c.p. map $\varphi: E \rightarrow B(H)$ extends to a c.c.p. map $\tilde{\varphi}: A \rightarrow B(H)$, i.e., the following diagram commutes:

Proof. Let $\left(p_{i}\right)_{i \in I} \subset B(H)$ be an increasing net of finite rank projections such that $p_{i} \rightarrow 1_{B(H)}$ SOT. (If H is separable, and $\left(e_{n}\right)_{n \geq 1}$ is an ONB for H, one can take p_{n} to be the projection onto $\operatorname{Span}\left\{e_{1}, \ldots, e_{n}\right\}$. In the general case, one may take the net of all finite rank projections.)

For all $i \in I$, we define $\varphi_{i}: E \rightarrow p_{i} B(H) p_{i}$, by

$$
\varphi_{i}(b)=p_{i} \varphi(b) p_{i}, \quad b \in E .
$$

Then φ_{i} is a c.c.p. map and $p_{i} B(H) p_{i} \simeq B\left(p_{i} H\right)$ is a matrix algebra. By Corollary 3.7, φ_{i} extends to a c.p. $\operatorname{map} \tilde{\varphi}_{i}$ on A :

such that $\tilde{\varphi}_{i \mid E}=\varphi_{i}$ and $\left\|\tilde{\varphi}_{i}\right\|=\left\|\tilde{\varphi}_{i}(1)\right\|=\left\|\varphi_{i}(1)\right\| \leq 1$ since $\left\|\varphi_{i}\right\| \leq 1$. Therefore $\widetilde{\varphi}_{i}$ is a contraction. Hence $\tilde{\varphi}_{i} \in B(A, B(H))_{1}$ (the closed unit ball of $B(A, B(H))$). Note that $B(A, B(H))$ is a dual space.

In general, if X is a Banach space and M is a von Neumann algebra, consider $B(X, M)$. Let $E_{0} \subset$ $B(X, M)^{*}$ be the space

$$
E_{0}=\operatorname{Span}\left\{x \otimes \xi \in B(X, M)^{*}: x \in X, \xi \in M_{*}\right\}
$$

where $(x \otimes \xi)(T)=\xi(T x)$ for all $T \in B(X, M)$. Then $E={\overline{E_{0}}}^{\|\cdot\|}$ is a Banach space and $E^{*}=B(X, M)$, in the sense that for every $\Lambda \in E^{*}$, there is a unique $T \in B(X, M)$ such that $\Lambda(\varphi)=\varphi(T)$, for all $\varphi \in E$. Moreover, $\|\Lambda\|=\|T\|$. We denote E by $B(X, M)_{*}$. By Alaoglu's theorem, the closed unit ball $B(X, M)_{1}$ of $B(X, M)$ is compact in the w^{*}-topology coming from the duality $B(X, M)=E^{*}$. Hence, if $\left(T_{\lambda}\right)$ is a net in $B(X, M)_{1}$, then it has a subnet $\left(T_{\lambda_{\mu}}\right)$ which converges w* to some $T \in B(X, M)_{1}$, i.e., $\varphi\left(T_{\lambda_{\mu}}\right) \rightarrow \varphi(T)$, for all $\varphi \in E$. In particular,

$$
\xi\left(T_{\lambda_{\mu}}(x)\right) \rightarrow \xi(T(x)), \quad x \in X, \xi \in M_{*},
$$

i.e., the net $\left(T_{\lambda_{\mu}}\right)$ converges point-ultraweakly to T.

Back to our setting, there exists $\tilde{\varphi} \in B(A, B(H))_{1}$ such that $\tilde{\varphi}_{i} \rightarrow \tilde{\varphi}$ in the point-ultraweak topology.
We have to show that (1) $\tilde{\varphi}$ is c.c.p. and that (2) $\left.\tilde{\varphi}\right|_{E}=\varphi$.
(2) For any $b \in E, \tilde{\varphi}_{i}(b)=p_{i} \varphi(b) p_{i}$ since $\left.\tilde{\varphi}_{i}\right|_{E}=\varphi_{i}$. Moreover, $\left\|\tilde{\varphi}_{i}(b)\right\| \leq\|b\|$ for all $i \in I$. Recall that $p_{i} \rightarrow 1_{B(H)}$ SOT. This will imply that $p_{i} \varphi(b) p_{i} \rightarrow \varphi(b)$ WOT, and we have that $\left\|p_{i} \varphi(b) p_{i}\right\| \leq\|\varphi(b)\|$, for all $i \in I$. Since on bounded sets in $B(H)$, WOT $=$ ultraweak topology, we deduce that $\tilde{\varphi}(b)=\varphi(b)$. Hence $\left.\tilde{\varphi}\right|_{E}=\varphi$.
(1) $\tilde{\varphi}$ is contractive (clear). $\tilde{\varphi}$ is also positive: Let $a \in A_{+}$. Since $\tilde{\varphi}_{i}(a) \rightarrow \tilde{\varphi}(a)$ ultraweakly and hence WOT, and $\tilde{\varphi}_{i}(a) \geq 0$ (since $\tilde{\varphi}_{i}$ is positive), we deduce $\tilde{\varphi}(a) \geq 0$. A similar argument applies to the amplifications $\left(\tilde{\varphi}_{i}\right)_{n}$ to conclude that $\tilde{\varphi}$ is c.p.

Injectivity and Arveson's theorem (Remark 1.6.2, [BO]):
Definition 3.9 (Injective C^{*}-algebras). Let A be a C^{*}-algebra. We say that A is injective if whenever $E \subset B$ is an operator subsystem of $a C^{*}$-algebra B and $\varphi: E \rightarrow A$ is a c.c.p. map then there exists $\tilde{\varphi}: B \rightarrow A$ c.c.p. with $\left.\tilde{\varphi}\right|_{E}=\varphi:$

A von Neumann algebra is called injective if it is injective as a C^{*}-algebra.

By Arveson's extension theorem, $B(H)$ is an injective von Neumann algebra.
Injectivity of a von Neumann algebra can be characterized as follows:
Proposition 3.10. Let $M \subset B(H)$ be a von Neumann algebra. Then M is injective if and only if there exists a contractive projection $P: B(H) \rightarrow M$ onto, i.e., a conditional expectation.

Theorem 3.11 (Pisier/Christensen-Sinclair, 1994). Let $M \subset B(H)$ be a von Neumann algebra. Then M is injective if and only if there exists a c.b. projection $P: B(H) \rightarrow M$ onto.

Lecture 4, GOADyn

September 21, 2021

Section 2.1 [BO]: Nuclear maps

Definition 4.1 (Definition 2.1.1, [BO]). Let A, B be C^{*}-algebras. A bounded linear map $\theta: A \rightarrow B$ is called nuclear if there exist nets of contractive completely positive (c.c.p.) maps

$$
\varphi_{n}: A \rightarrow M_{k(n)}(\mathbb{C}), \quad \psi_{n}: M_{k(n)}(\mathbb{C}) \rightarrow B \quad(n \in I)
$$

for some $k(n) \in \mathbb{N}$, such that $\psi_{n} \circ \varphi_{n} \rightarrow \theta$ in the point-norm topology, i.e., $\left\|\psi_{n} \circ \varphi_{n}(a)-\theta(a)\right\| \rightarrow 0$, for all $a \in A$.

Remark 4.2. Since $\psi_{n} \circ \varphi_{n}: A \rightarrow B$ is c.c.p., for all $n \in \mathbb{N}$, then θ is also c.c.p., whenever θ is nuclear.
Definition 4.3. Let A be a C^{*}-algebra and N a von Neumann algebra. A bounded linear map $\theta: A \rightarrow N$ is called weakly nuclear if there exists c.c.p. maps

$$
\varphi_{n}: A \rightarrow M_{k(n)}(\mathbb{C}), \quad \psi_{n}: M_{k(n)}(\mathbb{C}) \rightarrow N \quad(n \in I)
$$

for some $k(n) \in \mathbb{N}$, such that $\psi_{n} \circ \varphi_{n} \rightarrow \theta$ in the point-ultraweak topology, i.e.,

$$
\psi_{n} \circ \varphi_{n}(a) \xrightarrow{u w} \theta(a), \quad a \in A
$$

or equivalently, $\eta\left(\psi_{n} \circ \varphi_{n}(a)\right) \rightarrow \eta(\theta(a))$, for all $a \in A$ and $\eta \in N_{*}$ (the predual of $\left.N\right)$.
Remark 4.4 (Remark 2.1.3, $[\mathrm{BO}]$). Assume $N \subset B(H)$ is a von Neumann algebra. For every $x, y \in H$, let $\varphi_{x, y}: N \rightarrow \mathbb{C}$ be the vector functional $\varphi_{x, y}(T)=\langle T x, y\rangle, T \in N$. Then $\varphi_{x, y} \in N_{*}$, and, in fact, $\operatorname{span}\left\{\varphi_{x, y}: x, y \in H\right\}$ is norm-dense in N_{*}.

Let $a \in A$. Since $\psi_{n} \circ \varphi_{n}(a)$ is a bounded net (or sequence), then

$$
\psi_{n} \circ \varphi_{n}(a) \xrightarrow{u w} \theta(a) \quad \Longleftrightarrow \quad\left\langle\psi_{n} \circ \varphi_{n}(a) v, w\right\rangle \rightarrow\langle\theta(a) v, w\rangle, \quad v, w \in H .
$$

By the polarization identity, it is further sufficient to check $\left\langle\psi_{n} \circ \varphi_{n}(a) v, v\right\rangle \rightarrow\langle\theta(a) v, v\rangle$, for all $v \in H$.
Exercise: If θ is weakly nuclear, then θ is c.c.p.
Proposition 4.5 (Proposition 2.1.4, [BO]). If $M \subset B(H)$ is a von Neumann algebra, then the inclusion map $i: M \hookrightarrow B(H)$ is always weakly nuclear.

Proof. Choose an increasing net $\left(p_{i}\right)_{i \in I}$ of finite dimensional projections in $B(H)$, such that $p_{i} \nearrow 1$ SOT. Set $k_{i}=\operatorname{dim}\left(p_{i}(H)\right)$. Then $p_{i} B(H) p_{i} \cong B\left(p_{i}(H)\right) \cong M_{k_{i}}(\mathbb{C})$. Further, set

$$
\begin{array}{ll}
\varphi_{i}(a)=p_{i} a p_{i}, & a \in M \\
\psi_{i}(b)=b, & b \in B\left(p_{i}(H)\right)
\end{array}
$$

Then $\varphi_{i}: M \rightarrow B\left(p_{i}(H)\right)$ and $\psi_{i}: B\left(p_{i}(H)\right) \rightarrow B(H)$ are c.c.p. and $\psi_{i} \circ \varphi_{i}(a)=p_{i} a p_{i}$, for all $a \in M$. For all $v \in H$,

$$
\left\langle p_{i} a p_{i} v, w\right\rangle=\langle a \underbrace{p_{i} v}_{\rightarrow v}, \underbrace{p_{i} w}_{\rightarrow w}\rangle \longrightarrow\langle a v, w\rangle .
$$

Hence $p_{i} a p_{i} \rightarrow a$ in the WOT-topology. But $\left\|p_{i} a p_{i}\right\| \leq\|a\|$ for all i, hence $p_{i} a p_{i} \rightarrow a$ ultraweakly.

Note: By contrast, the identity map $i: M \rightarrow M$ may not necessarily be weakly nuclear! In fact, $i: M \rightarrow$ M is weakly nuclear if and only if M is an injective von Neumann algebra. Hence, if Γ is a non-amenable group, then the identity map $i: L(\Gamma) \rightarrow L(\Gamma)$ is not weakly nuclear. Here $L(\Gamma)$ denotes the group von Neumann algebra of Γ.

Section 2.2 [BO]: Non-unital technicalities

The purpose of this section is to provide some technical tools that will help passing from the case of not necessarily unital C^{*}-algebras (or maps) to the unital one. Every non-unital C^{*}-algebra A has a unitization \widetilde{A} which is a unital C^{*}-algebra with unit $1_{\tilde{A}}$, which contains A, and satisfies

$$
\widetilde{A}=A+\mathbb{C} 1_{\tilde{A}}
$$

The unitization \widetilde{A} is unique with these properties. The original C^{*}-algebra A is a closed two-sided ideal in \widetilde{A}, and $\widetilde{A} / A \cong \mathbb{C}$. Moreover, if B is any unital C^{*}-algebra which contains A, then \widetilde{A} is isomorphic to $A+\mathbb{C} 1_{B}$. (Note that the latter always is a C^{*}-algebra.) A quick way to construct \tilde{A} is by using the embedding $A \hookrightarrow A^{* *}$ (the second dual). Recall that $A^{* *} \cong \pi_{u}(A)^{\prime \prime}$ where π_{u} is the universal representation. Since $A^{* *}$ has a unit, we obtain $\widetilde{A} \cong A+\mathbb{C} 1_{A^{* *}}$.

We will not cover in lectures any of the results in this section, but only mention (without proof) the following:

Proposition 4.6 (Proposition 2.2.8, [BO]). Let M, N be von Neumann algebras, and let $\theta: M \rightarrow N$ be a unital, weakly nuclear map. Then there exist nets of normal u.c.p. maps

$$
\varphi_{n}: M \rightarrow M_{k(n)}(\mathbb{C}), \quad \psi_{n}: M_{k(n)}(\mathbb{C}) \rightarrow N
$$

for some $k(n) \in \mathbb{N}$, such that $\psi_{n} \circ \varphi_{n} \rightarrow \theta$ in the point-ultraweak topology.

Section 2.3 [BO]: Nuclear and exact C^{*}-algebras

Definition 4.7 (Definition 2.3.1, $[\mathrm{BO}]) . A C^{*}$-algebra A is nuclear if $\mathrm{id}_{A}: A \rightarrow A$ is nuclear.
Definition 4.8 (Definition 2.3.2, $[\mathrm{BO}]) . A C^{*}$-algebra A is exact if there exists a faithful representation $\pi: A \rightarrow B(H)$ such that π is nuclear.

Remark 4.9. A positive map $\varphi: A \rightarrow B$ (where A, B are C^{*}-algebras) is called faithful if $a \in A_{+}$and $\varphi(a)=0$ imply that $a=0$. A representation π is faithful if and only if it is one-to-one. (That one-to-one implies faithful is obvious, and if π is faithful, then $\pi(a)=0$ implies $\pi\left(a^{*} a\right)=\pi(a)^{*} \pi(a)=0$, and thus $a^{*} a=0$, implying $a=0$).

Remark 4.10. Let $\pi: A \rightarrow B(H)$ be a faithful representation of a C^{*}-algebra A. Then, A is nuclear if and only if the map $\pi: A \rightarrow \pi(A)$ is nuclear, while A is exact if and only if π is nuclear when π is regarded as taking values in $B(H)$. In particular, nuclearity implies exactness. (The converse is false.)

Definition 4.11 (Definition 2.3.3, [BO]). A von Neumann algebra M is called semidiscrete if the identity map $\operatorname{id}_{M}: M \rightarrow M$ is weakly nuclear.

Note: It is a deep and difficult result of A. Connes that a (separable) von Neumann algebra factor (i.e., has trivial center) is semidiscrete if and only if it is injective.

With the tools developed so far, one can prove (see textbook) the following:
Proposition 4.12 (Proposition 2.3.8, [BO]). Let A be a C^{*}-algebra. If $A^{* *}$ is semidiscrete, then A is nuclear.

Section 2.4 [BO]: First examples

First, look up Exercises 2.1.1 and 2.1.2 in [BO]. The latter implies that finite dimensional C*-algebras are nuclear. Furthermore, since inductive limits of nuclear C^{*}-algebras are nuclear (see Exercise 2.3.7 [BO]), we obtain:

Proposition 4.13 (Proposition 2.4.1, [BO]). Approximately finite-dimensional (AF) algebras are nuclear.
A further important class of examples is given by:
Proposition 4.14 (Proposition 2.4.2, [BO]). Every abelian C^{*}-algebra is nuclear.
Proof. (In the unital case.) Each unital abelian C^{*}-algebra is isomorphic to $C(X)$ for some compact Hausdorff space. Hence it suffices to show that if F is a finite subset of $C(X)$ and if $\varepsilon>0$, then, for some $n \geq 1$, there are ucp maps

$$
C(X) \xrightarrow{\varphi} \mathbb{C}^{n} \xrightarrow{\psi} C(X)
$$

such that $\|(\psi \circ \varphi)(f)-f\| \leq \varepsilon$ for all $f \in F$.
By compactness of X one can find a finite open cover $\left\{U_{j}\right\}_{j=1}^{n}$ of X such that

$$
\forall j \forall x, y \in U_{j} \forall f \in F:|f(x)-f(y)| \leq \varepsilon .^{\ddagger}
$$

Choose $x_{j} \in U_{j}$ for each j and define φ by

$$
\varphi(f)=\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right), \quad f \in C(X)
$$

Note that φ is a unital *-homomorphism, and hence in particular a ucp map.
Let $\left\{h_{i}\right\}_{i=1}^{n}$ be a partition of the unit subordinate to the cover $\left\{U_{i}\right\}_{i=1}^{n}$ (so that each h_{i} is supported inside $U_{i}, 0 \leq h_{i} \leq 1$, and $\sum_{i=1}^{n} h_{i}=1$). Define ψ by

$$
\psi\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)=\sum_{i=1}^{n} \lambda_{i} h_{i}
$$

Then ψ is a ucp map. Observe that

$$
(\psi \circ \varphi)(f)(x)=\sum_{i=1}^{n} f\left(x_{i}\right) h_{i}(x), \quad f \in C(X), \quad x \in X
$$

It follows that

$$
|f(x)-(\psi \circ \varphi)(f)(x)| \leq \sum_{i=1}^{n}\left|f(x)-f\left(x_{i}\right)\right| h_{i}(x), \quad f \in C(X), \quad x \in X
$$

[^0]for each $x \in X$, and then pick a finite subcover of $\left\{U_{x}\right\}_{x \in X}$.

If $f \in F$ and if $h_{i}(x)>0$, then $x \in U_{i}$ whence $\left|f(x)-f\left(x_{i}\right)\right| \leq \varepsilon$. This shows that

$$
\left|f(x)-f\left(x_{i}\right)\right| h_{i}(x) \leq \varepsilon h_{i}(x)
$$

for all $x \in X$ and for all $f \in F$. Hence $\|(\psi \circ \varphi)(f)-f\| \leq \varepsilon$ holds for all $f \in F$.

Note: In view of above result (and its proof), nuclearity is sometimes viewed as a noncommutative analogue of having a partition of unity.

Lecture 5, GOADyn

September 23, 2021

Section 2.5 [BO]: C^{*}-algebras associated to discrete groups

Let H be a Hilbert space. We denote by $\mathcal{U}(H)$ the set of all unitary operators in $B(H)$. Note that $\mathcal{U}(H)$ is a group: if $u_{1}, u_{2} \in \mathcal{U}(H)$, then $u_{1} u_{2} \in \mathcal{U}(H)$, the identity operator I is in $\mathcal{U}(H)$ and we have $u^{-1}=u^{*}$ for all $u \in \mathcal{U}(H)$.

Let Γ be a discrete group. A unitary representation of Γ on a Hilbert space H is a group homomorphism $u: \Gamma \rightarrow \mathcal{U}(H)$ for which we define $u_{s}=u(s) \in \mathcal{U}(H)$, for all $s \in \Gamma$. Note that $u_{e}=u(e)=I$. Moreover, we have $u_{s^{-1}}=\left(u_{s}\right)^{-1}=\left(u_{s}\right)^{*}$ for all $s \in \Gamma$. Consider now

$$
\ell^{2}(\Gamma)=\left\{f: \Gamma \rightarrow \mathbb{C}: \sum_{s \in \Gamma}|f(s)|^{2}<\infty\right\}
$$

equipped with the norm

$$
\|f\|_{2}=\left(\sum_{s \in \Gamma}|f(s)|^{2}\right)^{1 / 2}, \quad f \in \ell^{2}(\Gamma)
$$

Then $\ell^{2}(\Gamma)$ is a Hilbert space with orthonormal basis $\left\{\delta_{s}: s \in \Gamma\right\}$, where

$$
\delta_{s}(t)= \begin{cases}1 & \text { if } s=t \\ 0 & \text { else }\end{cases}
$$

Two very important unitary representations of Γ on $\ell^{2}(\Gamma)$ are the following:
(1) The left regular representation $\lambda: \Gamma \rightarrow B\left(\ell^{2}(\Gamma)\right)$, given by $\lambda_{s}\left(\delta_{t}\right)=\delta_{s t}, s, t \in \Gamma$.
(2) The right regular representation $\rho: \Gamma \rightarrow B\left(\ell^{2}(\Gamma)\right)$, given by $\rho_{s}\left(\delta_{t}\right)=\delta_{t s^{-1}}, s, t \in \Gamma$.

Note that λ and ρ are unitarily equivalent: the intertwining unitary $U: \ell^{2}(\Gamma) \rightarrow \ell^{2}(\Gamma)$ is given by

$$
U \delta_{t}=\delta_{t^{-1}}
$$

Indeed, for all $s, t \in \Gamma, U^{*} \rho_{s} U \delta_{t}=U^{*} \rho_{s} \delta_{t^{-1}}=U^{*} \delta_{t^{-1} s^{-1}}=U^{*} \delta_{(s t)^{-1}}=\delta_{s t}=\lambda_{s} \delta_{t}$, which shows that $\lambda=U^{*} \rho U$.

Consider the group ring $\mathbb{C} \Gamma$ of Γ, i.e.,

$$
\mathbb{C} \Gamma=\left\{\sum_{s \in \Gamma} a_{s} s: a_{s} \in \mathbb{C}, \text { only finitely many } a_{s} \text { are non-zero }\right\}
$$

We want to view $\mathbb{C} \Gamma$ as a vector space over Γ. By defining

$$
\begin{aligned}
\left(\sum_{s \in \Gamma} a_{s} s\right)\left(\sum_{t \in \Gamma} b_{t} t\right) & =\sum_{s, t \in \Gamma} a_{s} b_{t} s t & & \text { (multiplication) } \\
\left(\sum_{s \in \Gamma} a_{s} s\right)^{*} & =\sum_{s \in \Gamma} \overline{a_{s}} s^{-1} & & \left({ }^{*}\right. \text {-involution) }
\end{aligned}
$$

we make $\mathbb{C} \Gamma$ into a ${ }^{*}$-algebra. Given a unitary representation $s \in \Gamma \mapsto u_{s} \in \mathcal{U}(H)$ of Γ on some Hilbert space H, it gives rise to a unital ${ }^{*}$-homomorphism $\pi: \mathbb{C} \Gamma \rightarrow B(H)$ such that

$$
\pi(s)=u_{s}, \quad s \in \Gamma
$$

This is a 1-1 correspondence. We let

$$
C_{\lambda}^{*}(\Gamma):=\overline{\lambda(\mathbb{C} \Gamma)}^{\|\cdot\|} \subset B\left(\ell^{2}(\Gamma)\right)
$$

The above inclusion is an embedding, since $\lambda: \mathbb{C} \Gamma \rightarrow B\left(\ell^{2}(\Gamma)\right)$ is injective: indeed, if $x=\sum_{t \in \Gamma} a_{t} t \in \mathbb{C} \Gamma$ satisfies $\lambda(x)=0$, then for all $s \in \Gamma$,

$$
0=\left\langle\lambda(x) \delta_{e}, \delta_{s}\right\rangle=\sum_{t \in \Gamma} a_{t}\left\langle\lambda(t) \delta_{e}, \delta_{s}\right\rangle=\sum_{t \in \Gamma} a_{t}\left\langle\delta_{t}, \delta_{s}\right\rangle=a_{s}
$$

Hence $x=0$.
We call $C_{\lambda}^{*}(\Gamma)$ the reduced group C^{*}-algebra of Γ (it is sometimes also denoted by $C_{r}^{*}(\Gamma)$). $C_{\lambda}^{*}(\Gamma)$ is thus the completion of $\mathbb{C} \Gamma$ with respect to

$$
\|x\|_{r}=\|\lambda(x)\|_{B\left(\ell^{2}(\Gamma)\right)}
$$

Similarly, we let $C_{\rho}^{*}(\Gamma)$ be the completion of $\mathbb{C} \Gamma$ with respect to ρ.
Definition 5.1. The full (universal) group C^{*}-algebra of Γ, denoted by $C^{*}(\Gamma)$, is the completion of $\mathbb{C} \Gamma$ with respect to

$$
\|x\|_{u}:=\sup \{\|\pi(x)\|: \pi \text { is a (cyclic) representation of } \Gamma\} .
$$

Note that $\|x\|_{u} \leq\|x\|_{1}($ since $\|\pi(s)\|=1$ for all $s \in \Gamma)$.
Remark 5.2. If Γ is an abelian discrete group, then $C_{\lambda}^{*}(\Gamma)=C^{*}(\Gamma)$. (This holds more generally for amenable groups, see Theorem 2.6.8, [BO].)

Example 5.3 (Example 2.5.1, $[\mathrm{BO}])$. If $\Gamma=\mathbb{Z}$, then $C_{\lambda}^{*}(\Gamma) \cong C(\mathbb{T})$. To prove this, let $u=\lambda(1) \in$ $\mathcal{U}\left(\ell^{2}(\Gamma)\right)$. If $\sum_{k \in \mathbb{Z}} a_{k} k \in \mathbb{C} \mathbb{Z}$, then

$$
\lambda\left(\sum_{k \in \mathbb{Z}} a_{k} k\right)=\sum_{k \in \mathbb{Z}} a_{k} u^{k} \in C^{*}(u)
$$

Hence $u \in \lambda(\mathbb{C Z}) \subset C^{*}(u)$, so $C_{\lambda}^{*}(\mathbb{Z})=C^{*}(u) \cong C(\sigma(u))$. We claim that $\sigma(u)=\mathbb{T}$. Note that u is the bilateral shift on $\ell^{2}(\mathbb{Z})$, i.e., $u \delta_{n}=\delta_{n+1}$ for all $n \in \mathbb{Z}$. Since u is a unitary, we have $\sigma(u) \subset \mathbb{T}$. To show equality, let $z \in \mathbb{T}$. For $k \in \mathbb{N}$, set

$$
\zeta_{k, z}:=k^{-1 / 2} \sum_{j=1}^{k}(\bar{z})^{j} \delta_{j} .
$$

Then $\left\|\zeta_{k, z}\right\|=1$ and one can check that

$$
u \zeta_{k, z}=k^{-1 / 2} \sum_{j=1}^{k}(\bar{z})^{j} \delta_{j+1}=z k^{-1 / 2} \sum_{j=1}^{k}(\bar{z})^{j+1} \delta_{j+1}=z k^{-1 / 2} \sum_{j=2}^{k+1}(\bar{z})^{j} \delta_{j}
$$

Hence $\left\|(u-z \cdot 1) \zeta_{k, z}\right\|=\sqrt{\frac{2}{k}} \rightarrow 0$ as $k \rightarrow \infty$, so $z \in \sigma(u)$. (We say that $\zeta_{k, z}$ is a sequence of approximate eigenvectors for z.)

A more general approach. Let Γ be an abelian discrete group. Its (Pontryagin) dual is defined to be

$$
\hat{\Gamma}=\{\varphi: \Gamma \rightarrow \mathbb{T}: \varphi \text { is a group homomorphism }\}
$$

Note that $\hat{\mathbb{Z}}=\mathbb{T}$. Indeed, for $z \in \mathbb{T}$, let $\varphi_{z} \in \hat{\mathbb{Z}}$ be given by $\varphi_{z}(n)=z^{n}, n \in \mathbb{Z}$. Then $z \mapsto \varphi_{z}$ defines a homomorphism $\mathbb{T} \rightarrow \hat{\mathbb{Z}}$. The fact that this map is onto follows from this: Given $\varphi \in \hat{\mathbb{Z}}$, set $z=\varphi(1) \in \mathbb{T}$. Then $\varphi(n)=\varphi(1)^{n}=z^{n}=\varphi_{z}(n)$ for all $n \in \mathbb{Z}$.

Theorem 5.4. If Γ is an abelian discrete group, then $C_{\lambda}^{*}(\Gamma) \cong C(\hat{\Gamma})$.
Proof. If Γ is abelian, then $C_{\lambda}^{*}(\Gamma)$ is abelian, so $C_{\lambda}^{*}(\Gamma) \cong C(\Omega)$, where Ω is the space of characters on $C_{\lambda}^{*}(\Gamma)$.
Claim. Ω is homeomorphic to $\hat{\Gamma}$.
Any $\varphi \in \Omega$ induces a $\hat{\varphi} \in \hat{\Gamma}$ defined by $\hat{\varphi}(t)=\varphi(t), t \in \Gamma$. (If $\varphi \in \Omega$, then $t \mapsto \varphi(t)$ belongs to $\hat{\Gamma}$.) Set $\Phi: \Omega \rightarrow \hat{\Gamma}$, where $\Phi(\varphi)=\hat{\varphi}, \varphi \in \Omega$. Then we must show that
(i) Φ is continuous,
(ii) Φ is $1-1$, and
(iii) Φ is onto,
so that Φ is a homeomorphism.
(i) Let $\left(\varphi_{\alpha}\right)_{\alpha}, \varphi \in \Omega$. Assume that $\varphi_{\alpha} \rightarrow \varphi$. Then $\varphi_{\alpha}(x) \rightarrow \varphi(x)$, for all $x \in C_{\lambda}^{*}(\Gamma)$, which implies that $\varphi_{\alpha}(t) \rightarrow \varphi(t)$, for all $t \in \Gamma$. Hence $\Phi\left(\varphi_{\alpha}\right)(t) \rightarrow \Phi(\varphi)(t)$, for all $t \in \Gamma$, i.e., $\Phi\left(\varphi_{\alpha}\right) \rightarrow \Phi(\varphi)$.
(ii) Let $\varphi, \psi \in \Omega$. Then $\Phi(\varphi)=\Phi(\psi)$ implies that $\varphi(t)=\psi(t)$, for all $t \in \Gamma$, hence $\varphi(x)=\psi(x)$, for all $x \in \mathbb{C} \Gamma$. So $\varphi(x)=\psi(x)$, for all $x \in C_{\lambda}^{*}(\Gamma)$, and thus $\varphi=\psi$.
(iii) Let $\varphi_{0} \in \hat{\Gamma}$. Then $\varphi_{0}: \Gamma \rightarrow B(\mathbb{C})$ is a one-dimensional representation. It extends to a *homomorphism $\varphi: \mathbb{C} \Gamma \rightarrow B(\mathbb{C})$, and further to a^{*}-representation $\varphi: C^{*}(\Gamma) \rightarrow B(\mathbb{C})=\mathbb{C}$. Since $C_{\lambda}^{*}(\Gamma)=C^{*}(\Gamma)$ (which holds because Γ is abelian), we deduce that $\varphi \in \Omega$ and $\Phi(\varphi)=\varphi_{0}$.

Remark 5.5. $C^{*}(\Gamma)$ has the following universal property: Given any unitary representation $u: \Gamma \rightarrow \mathcal{U}(H)$ of Γ, there exists a unique *-homomorphism $\pi_{u}: C^{*}(\Gamma) \rightarrow B(H)$ such that $\pi_{u}(s)=u_{s}$ for all $s \in \Gamma$.

Proposition 5.6 (Proposition 2.5.3, [BO]). The vector state $\tau_{e}: C_{\lambda}^{*}(\Gamma) \rightarrow \mathbb{C}$ given by $\tau_{e}(x)=\left\langle x \delta_{e}, \delta_{e}\right\rangle$, $x \in C_{\lambda}^{*}(\Gamma)$ defines a faithful tracial state on $C_{\lambda}^{*}(\Gamma)$.

Proof. τ_{e} is positive, since $\tau_{e}\left(x^{*} x\right)=\left\langle x^{*} x \delta_{e}, \delta_{e}\right\rangle=\left\|x \delta_{e}\right\|^{2} \geq 0$. Hence τ_{e} is a positive linear functional on $C_{\lambda}^{*}(\Gamma)$ with $\left\|\tau_{e}\right\|=\tau_{e}(e)=1$. Furthermore, τ_{e} is tracial, since

$$
\begin{aligned}
& \tau_{e}\left(\lambda_{s} \lambda_{t}\right)=\left\langle\lambda_{s t} \delta_{e}, \delta_{e}\right\rangle=\left\langle\delta_{s t}, \delta_{e}\right\rangle= \begin{cases}1 & \text { if } s t=e \\
0 & \text { else }\end{cases} \\
& \tau_{e}\left(\lambda_{t} \lambda_{s}\right)=\left\langle\lambda_{t s} \delta_{e}, \delta_{e}\right\rangle=\left\langle\delta_{t s}, \delta_{e}\right\rangle= \begin{cases}1 & \text { if } t s=e \\
0 & \text { else }\end{cases}
\end{aligned}
$$

Since $s t=e$ if and only if $s=t^{-1}$ if and only if $t s=e$, it folllows that $\tau_{e}\left(\lambda_{s} \lambda_{t}\right)=\tau_{e}\left(\lambda_{t} \lambda_{s}\right)$ for all $s, t \in \Gamma$. Use that $\lambda(\mathbb{C} \Gamma)$ is dense in $C_{\lambda}^{*}(\Gamma)$ to deduce that

$$
\tau_{e}(x y)=\tau_{e}(y x), \quad x, y \in C_{\lambda}^{*}(\Gamma)
$$

Also, τ_{e} is faithful: Let $0 \leq x \in C_{\lambda}^{*}(\Gamma)$ with $\tau_{e}(x)=\left\langle x \delta_{e}, \delta_{e}\right\rangle=0$. Then $x^{1 / 2} \delta_{e}=0$. Note that δ_{e} is a separating vector, i.e., if $x \delta_{e}=y \delta_{e}$ for $x, y \in C_{\lambda}^{*}(\Gamma)$, then $x=y$. Indeed, we claim that if $x \delta_{e}=y \delta_{e}$, then for all $s \in \Gamma$,

$$
x \delta_{s}=x \delta_{e\left(s^{-1}\right)^{-1}}=x \rho_{s^{-1}} \delta_{e}=\rho_{s^{-1}} x \delta_{e}=\rho_{s^{-1}} y \delta_{e}=y \delta_{s}
$$

since $\rho_{s^{-1}}$ commutes with $C_{\lambda}^{*}(\Gamma)$, and then use that $\left\{\delta_{s}: s \in \Gamma\right\}$ is an orthonormal basis for $\ell^{2}(\Gamma)$ to conclude $x=y$. So $x^{1 / 2} \delta_{e}=0$ does imply $x=0$.

Definition 5.7. The group von Neumann algebra associated to Γ is

$$
L(\Gamma)=\operatorname{vN}(\Gamma):=C_{\lambda}^{*}(\Gamma)^{\prime \prime} \subset B\left(\ell^{2}(\Gamma)\right) .
$$

Theorem 5.8 (Fell's Absorption Principle, Theorem 2.5.5, [BO]). Let π be a unitary representation of Γ on H. Then $\lambda \otimes \pi$ is unitarily equivalent to $\lambda \otimes 1_{H}$, i.e., there exists a unitary operator $U: \ell^{2}(\Gamma) \otimes H \rightarrow$ $\ell^{2}(\Gamma) \otimes H$ such that $\lambda \otimes 1_{H}=U^{*}(\lambda \otimes \pi) U$. (Roughly speaking, the left regular representation absorbs all other representations tensorially.)

Theorem 5.9 (Proposition 2.5.9 and Corollary 2.5.12, $[\mathrm{BO}])$. Let $\Lambda \subset \Gamma$ be a subgroup. Then $C_{\lambda}^{*}(\Lambda) \subset$ $C_{\lambda}^{*}(\Gamma)$ (inclusion of C^{*}-algebras). Moreover, there exists a c.c.p. projection $E_{\Lambda}^{\Gamma}: C_{\lambda}^{*}(\Gamma) \rightarrow C_{\lambda}^{*}(\Lambda)$ onto, i.e., a conditional expectation.

Proof. We follow Pisier (Proposition 8.5, Introduction to Operator Spaces). Define a map $J: \mathbb{C} \Lambda \rightarrow \mathbb{C} \Gamma$ by $J\left(\lambda_{\Lambda}(t)\right)=\lambda_{\Gamma}(t), t \in \Lambda$. We claim that J extends to an isometric (C^{*}-algebraic) embedding of $C_{\lambda}^{*}(\Lambda)$ into $C_{\lambda}^{*}(\Gamma)$. We know that $\mathbb{C} \Lambda \ni \sum \alpha_{t} \lambda_{\Lambda}(t)($ finite sum $) \stackrel{J}{\longmapsto} \sum \alpha_{t} \lambda_{\Gamma}(t) \in \mathbb{C} \Gamma$. We need to check that

$$
\begin{equation*}
\left\|\sum \alpha_{t} \lambda_{\Lambda}(t)\right\|=\left\|\sum \alpha_{t} \lambda_{\Gamma}(t)\right\| \tag{5.1}
\end{equation*}
$$

Then, by the density of $\mathbb{C} \Lambda$ in $C_{\lambda}^{*}(\Lambda)$, respectively, of $\mathbb{C} \Gamma$ in $C_{\lambda}^{*}(\Gamma)$, it will follow that J extends to an isometric map from $C_{\lambda}^{*}(\Lambda)$ into $C_{\lambda}^{*}(\Gamma)$.
To prove (5.1), let $\left(\delta_{t}^{\Gamma}\right)_{t \in \Gamma}$ be an orthonormal basis for $\ell^{2}(\Gamma)$ and $\left(\delta_{t}^{\Lambda}\right)_{t \in \Gamma}$ be an orthonormal basis for $\ell^{2}(\Lambda)$. Define $Q=\Gamma / \Lambda$ (the right cosets). For all $q \in Q$, pick a transversal $s(q) \in q$. Then $\Gamma=\dot{U}_{q \in Q} \Lambda s(q)$ (disjoint union). Then we have the set identification $\Gamma=\Lambda \times Q$ by means of the map $t s(q) \mapsto(t, q)$.
Define a unitary map $U: \ell^{2}(\Lambda) \otimes \ell^{2}(Q) \rightarrow \ell^{2}(\Gamma)$ by

$$
U\left(\delta_{t}^{\Lambda} \otimes \delta_{q}^{Q}\right)=\delta_{t s(q)}^{\Gamma}
$$

We claim that

$$
\begin{equation*}
U^{*} \lambda_{\Gamma}(r) U=\lambda_{\Lambda}(r) \otimes I_{\ell^{2}(Q)}, \quad r \in \Lambda \tag{5.2}
\end{equation*}
$$

Indeed, $U^{*} \lambda_{\Gamma}(r) U\left(\delta_{t}^{\Lambda} \otimes \delta_{q}^{Q}\right)=U^{*} \lambda_{\Gamma}(r) \delta_{t s(q)}^{\Gamma}=U^{*} \delta_{r t s(q)}^{\Gamma}=\delta_{r t}^{\Lambda} \otimes \delta_{q}^{Q}=\left(\lambda_{\Lambda}(r) \otimes I_{\ell^{2}(Q)}\right)\left(\delta_{t}^{\Lambda} \otimes \delta_{q}^{Q}\right), r \in \Lambda$. By (5.2) it follows that $U^{*}\left(\sum \alpha_{t} \lambda_{\Gamma}(t)\right) U=\left(\sum \alpha_{t} \lambda_{\Lambda}(t)\right) \otimes I_{\ell^{2}(Q)}$. This implies that

$$
\left\|\sum \alpha_{t} \lambda_{\Gamma}(t)\right\|=\left\|U^{*}\left(\sum \alpha_{t} \lambda_{\Gamma}(t)\right) U\right\|=\left\|\left(\sum \alpha_{t} \lambda_{\Gamma}(t)\right) \otimes I_{\ell^{2}(Q)}\right\|=\left\|\sum \alpha_{t} \lambda_{\Lambda}(t)\right\|,
$$

as wanted.
It remains to prove the existence of a conditional expectation. Let $V: \ell^{2}(\Lambda) \rightarrow \ell^{2}(\Gamma)$ be defined by $V \delta_{t}^{\Lambda}=\delta_{t}^{\Gamma}$ for all $t \in \Lambda \subset \Gamma$. Then V is an isometry and

$$
V^{*} \delta_{t}^{\Gamma}=\left\{\begin{array}{cl}
\delta_{t}^{\Lambda} & t \in \Lambda \\
0 & t \notin \Lambda
\end{array}\right.
$$

since

$$
\left\langle V^{*} \delta_{t}^{\Gamma}, \delta_{s}^{\Lambda}\right\rangle=\left\langle\delta_{t}^{\Gamma}, V \delta_{s}^{\Lambda}\right\rangle=\left\langle\delta_{t}^{\Gamma}, \delta_{s}^{\Gamma}\right\rangle=\left\{\begin{array}{cc}
0 & t \neq s \\
1 & t=s
\end{array}\right.
$$

Now let $E_{\Lambda}^{\Gamma}: C_{\lambda}^{*}(\Gamma) \rightarrow B\left(\ell^{2}(\Lambda)\right)$ be defined by

$$
E_{\Lambda}^{\Gamma}(x)=V^{*} x V, \quad x \in C_{\lambda}^{*}(\Gamma)
$$

Then E_{Λ}^{Γ} is c.c.p. We claim that

$$
C_{\lambda}^{*}(\Lambda) \ni E_{\Lambda}^{\Gamma}\left(\lambda_{\Gamma}(t)\right)=\left\{\begin{array}{cl}
\lambda_{\Lambda}(t) & t \in \Lambda \\
0 & t \notin \Lambda
\end{array}\right.
$$

So $E_{\Lambda}^{\Gamma}(\mathbb{C} \Gamma) \subset C_{\lambda}^{*}(\Lambda)$. Then

$$
E_{\Lambda}^{\Gamma}(\underbrace{\overline{\mathbb{C} \Gamma}}_{C_{\lambda}^{*}(\Gamma)}) \subset \overline{C_{\lambda}^{*}(\Lambda)}=C_{\lambda}^{*}(\Lambda)
$$

Hence E_{Λ}^{Γ} is a c.c.p. projection onto $C_{\lambda}^{*}(\Lambda)\left(E_{\Lambda}^{\Gamma}\right.$ acts as the identity on $\mathbb{C} \Gamma$, which is dense in $\left.C_{\lambda}^{*}(\Gamma)\right)$, i.e., a conditional expectation.

Definition 5.10 (Definition 2.5.6, [BO]). A function $\varphi: \Gamma \rightarrow \mathbb{C}$ is called positive definite if the matrix $\left[\varphi\left(s^{-1} t\right)\right]_{s, t \in F} \in M_{F}(\mathbb{C})_{+}$for every finite set $F \subset \Gamma$.

Fix a positive definite function $\varphi: \Gamma \rightarrow \mathbb{C}$ and recall that $C_{c}(\Gamma)$ denotes the set of finitely supported functions on Γ. Define $\langle\cdot, \cdot\rangle_{\varphi}: C_{c}(\Gamma) \times C_{c}(\Gamma) \rightarrow \mathbb{C}$ by

$$
\langle f, g\rangle_{\varphi}=\sum_{s, t \in F} \varphi\left(s^{-1} t\right) f(t) \overline{g(s)}, \quad f, g \in C_{c}(\Gamma)
$$

One can check that $\langle\cdot, \cdot\rangle_{\varphi}$ is positive semidefinite (use that φ is positive definite). Let $\ell_{\varphi}^{2}(\Gamma)$ be the Hilbert space completion of $C_{c}(\Gamma) /\left\{f \in C_{c}(\Gamma):\langle f, f\rangle_{\varphi}=0\right\}$. We write $\hat{f}=[f] \in \ell_{\varphi}^{2}(\Gamma)$, for all $f \in C_{c}(\Gamma)$.

Definition 5.11 (Definition 2.5.7, [BO]). Let $\varphi: \Gamma \rightarrow \mathbb{C}$ be positive definite. Define $\lambda^{\varphi}: \Gamma \rightarrow B\left(\ell_{\varphi}^{2}(\Gamma)\right)$ by

$$
\lambda_{s}^{\varphi}(\hat{f})=\widehat{s . f}, \quad s \in \Gamma
$$

where $(s . f)(t)=f\left(s^{-1} t\right)$ for all $t \in \Gamma$. Then λ^{φ} is a unitary representation satisfying $\lambda_{s}^{\varphi} \circ \lambda_{t}^{\varphi}=\lambda_{s t}^{\varphi}$, for all $s, t \in \Gamma$, and λ_{s}^{φ} is an isometry for all s, as

$$
\left\|\lambda_{s}^{\varphi}(\hat{f})\right\|^{2}=\sum_{x, y \in \Gamma} \varphi\left(x^{-1} y\right) f\left(s^{-1} x\right) \overline{f\left(s^{-1} y\right)}=\sum_{x^{\prime}, y^{\prime} \in \Gamma} \varphi\left(\left(x^{\prime}\right)^{-1} y^{\prime}\right) f\left(x^{\prime}\right) \overline{f\left(y^{\prime}\right)}=\|\hat{f}\|^{2}
$$

where $x^{\prime}=s^{-1} x, y^{\prime}=s^{-1} y$ and hence $x^{-1} y=\left(x^{\prime}\right)^{-1} y^{\prime}$. Moreover,

$$
\left\langle\lambda_{s}^{\varphi} \hat{\delta}_{e}, \hat{\delta}_{e}\right\rangle_{\varphi}=\left\langle\hat{\delta}_{s}, \hat{\delta}_{e}\right\rangle_{\varphi}=\varphi(s), \quad s \in \Gamma
$$

so we can recover φ from $\left\langle\cdot \hat{\delta}_{e}, \hat{\delta}_{e}\right\rangle_{\varphi}$.
Remark 5.12. Suppose that $\varphi: C^{*}(\Gamma) \rightarrow \mathbb{C}$ is a positive linear functional. Then $s \mapsto \varphi(s)$ is positive definite on Γ. Indeed, for all $s_{1}, \ldots, s_{n} \in \Gamma$, we have

$$
\left[\varphi\left(s_{i}^{-1} s_{j}\right)\right]=\left(\operatorname{id}_{n} \otimes \varphi\right)\left(\left[\begin{array}{ccc}
s_{1} & \cdots & s_{n} \\
& 0 &
\end{array}\right]^{*}\left[\begin{array}{ccc}
s_{1} & \cdots & s_{n} \\
& 0 &
\end{array}\right]\right) \geq 0
$$

since φ is completely positive. The GNS space of $C^{*}(\Gamma)$ with respect to φ is $\ell_{\varphi}^{2}(\Gamma)$.
Definition 5.13 (Definition 2.5.10, [BO]). Let $\varphi: \Gamma \rightarrow \mathbb{C}$ be any function. Define $\omega_{\varphi}: \mathbb{C} \Gamma \rightarrow \mathbb{C}$ by

$$
\omega_{\varphi}\left(\sum_{t \in \Gamma} \alpha_{t} t\right)=\sum_{t \in \Gamma} \varphi(t) \alpha_{t}
$$

and a multiplier $m_{\varphi}: \mathbb{C} \Gamma \rightarrow \mathbb{C} \Gamma$ by

$$
m_{\varphi}\left(\sum_{t \in \Gamma} \alpha_{t} t\right)=\sum_{t \in \Gamma} \varphi(t) \alpha_{t} t
$$

Theorem 5.14 (Theorem 2.5.11, $[\mathrm{BO}]) . \operatorname{Let} \varphi: \Gamma \rightarrow \mathbb{C}$ be a function with $\varphi(e)=1$. Then the following are equivalent:
(1) φ is positive definite.
(2) There exists a unitary representation λ_{φ} of Γ on a Hilbert space H_{φ} and a unit vector ξ_{φ} such that

$$
\varphi(s)=\left\langle\lambda_{\varphi}(s) \xi_{\varphi}, \xi_{\varphi}\right\rangle, \quad s \in \Gamma
$$

(3) The functional ω_{φ} extends to a state on $C^{*}(\Gamma)$.
(4) The multiplier m_{φ} extends to a u.c.p. map on either $C^{*}(\Gamma)$ or $C_{\lambda}^{*}(\Gamma)$, or extends to a normal u.c.p. map on $L(\Gamma)$.

Proof. We show $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(1)$.
$\mathbf{(1)} \Rightarrow \mathbf{(2) :}$ Let $\varphi: \Gamma \rightarrow \mathbb{C}$ be positive definite. Then, as in Definition 5.11 , there exists a Hilbert space $\ell_{\varphi}^{2}(\Gamma)$, a unitary representation $\lambda^{\varphi}: \Gamma \rightarrow \mathcal{U}\left(\ell_{\varphi}^{2}(\Gamma)\right)$ and a unit vector, namely $\hat{\delta}_{e} \in \ell_{\varphi}^{2}(\Gamma)$ such that

$$
\varphi(s)=\left\langle\lambda^{\varphi}(s) \hat{\delta}_{e}, \hat{\delta}_{e}\right\rangle, \quad s \in \Gamma
$$

This proves (2).
$\mathbf{(2)} \Rightarrow \mathbf{(3)}$: By universality of $C^{*}(\Gamma)$, the unitary representation λ^{φ} from above extends to a unital *homomorphism $\lambda^{\varphi}: C^{*}(\Gamma) \rightarrow B\left(\ell_{\varphi}^{2}(\Gamma)\right)$. It is easy to see that

$$
\omega(x)=\left\langle\lambda^{\varphi}(x) \hat{\delta}_{e}, \hat{\delta}_{e}\right\rangle, \quad x \in C^{*}(\Gamma)
$$

defines a state on $C^{*}(\Gamma)$. Moreover, if $x=\sum_{t \in \Gamma} \alpha_{t} t \in \mathbb{C} \Gamma$, then

$$
\omega(x)=\sum_{t \in \Gamma} \alpha_{t}\left\langle\lambda^{\varphi}(t) \hat{\delta}_{e}, \hat{\delta}_{e}\right\rangle=\sum_{t \in \Gamma} \varphi(t) \alpha_{t}=\omega_{\varphi} .
$$

Hence ω is the desired extension of ω_{φ} to a state on $C^{*}(\Gamma)$.
$\mathbf{(3)} \Rightarrow \mathbf{(4)}$: We first consider the $L(\Gamma)$ case. Let $C^{*}(\Gamma) \subset B(H)$ be a faithful representation such that ω_{φ} extends to a normal state ω on $B(H)$. (One can take $\pi: C^{*}(\Gamma) \rightarrow B(H)$ to be the universal representation, which is faithful, and where each state on $C^{*}(\Gamma)$ is represented by a vector state. This will do the job, because each vector state is normal.) So we assume that $\omega(T)=\langle T \xi, \xi\rangle, T \in B(H)$, for some unit vector $\xi \in H$. Let $V_{\xi}: H \rightarrow \mathbb{C}$ be the projection onto $\mathbb{C} \xi \simeq \mathbb{C} .\left(V_{\xi}\right.$ is the adjoint of the map $\left.\mathbb{C} \ni \beta \mapsto \beta \xi \in H.\right)$ Note that $\left\|V_{\xi}\right\|=1$, and that

$$
\omega(T)=V_{\xi} T V_{\xi}^{*}, \quad T \in B(H)
$$

By Fell's absorption principle, the two representations $\Gamma \rightarrow \mathcal{U}\left(\ell^{2}(\Gamma) \otimes H\right)$ given by $t \mapsto \lambda_{t} \otimes t$ and $t \mapsto \lambda_{t} \otimes 1_{H}$ are unitarily equivalent. Hence there exists $U \in \mathcal{U}\left(\ell^{2}(\Gamma) \otimes H\right)$ such that

$$
U\left(\lambda_{t} \otimes 1_{H}\right) U^{*}=\lambda_{t} \otimes t, \quad t \in \Gamma
$$

Let $\sigma: L(\Gamma) \rightarrow B\left(\ell^{2}(\Gamma)\right) \otimes B(H)$ be the normal *-homomorphism given by

$$
\sigma(x)=U\left(x \otimes 1_{H}\right) U^{*}, \quad x \in L(\Gamma) .
$$

Next, note that there is a normal u.c.p. map $\psi: B\left(\ell^{2}(\Gamma)\right) \otimes B(H) \rightarrow B\left(\ell^{2}(\Gamma)\right)$ satisfying $\psi(S \otimes T)=\omega(T) S$, for all $S \in B\left(\ell^{2}(\Gamma)\right), T \in B(H)$. Namely, the map defined by

$$
\psi(x)=\left(I_{\ell^{2}(\Gamma)} \otimes V_{\xi}\right) x\left(I_{\ell^{2}(\Gamma)} \otimes V_{\xi}^{*}\right), \quad x \in B\left(\ell^{2}(\Gamma)\right) \otimes B(H)
$$

This is called a slice map, and is usually denoted by $\operatorname{id}_{B\left(\ell^{2}(\Gamma)\right)} \otimes \omega$. We deduce that

$$
m=\left(\operatorname{id}_{B\left(\ell^{2}(\Gamma)\right)} \otimes \omega\right) \circ \sigma: L(\Gamma) \rightarrow B\left(\ell^{2}(\Gamma)\right)
$$

is a normal u.c.p. map, as well. We claim that $m: L(\Gamma) \rightarrow L(\Gamma)$ is the normal u.c.p. extension of $m_{\varphi}: \mathbb{C} \Gamma \rightarrow \mathbb{C} \Gamma$. To verify this, it suffices to show that $m\left(\lambda_{t}\right)=\varphi(t) \lambda_{t}$ for all $t \in \Gamma$. Indeed,

$$
\begin{aligned}
m\left(\lambda_{t}\right)=\left(\operatorname{id}_{B\left(\ell^{2}(\Gamma)\right)} \otimes \omega\right) U\left(\lambda_{t} \otimes 1_{H}\right) U^{*} & =\left(\operatorname{id}_{B\left(\ell^{2}(\Gamma)\right)} \otimes \omega\right)\left(\lambda_{t} \otimes t\right) \\
& =\omega(t) \lambda_{t}=\omega_{\varphi}(t) \lambda_{t}=\varphi(t) \lambda_{t}
\end{aligned}
$$

By normality of m, since $\mathbb{C} \Gamma$ is ultraweakly dense in $L(\Gamma)$, it follows that $m(L(\Gamma)) \subset L(\Gamma)$, so $m: L(\Gamma) \rightarrow$ $L(\Gamma)$, as wanted. The restriction of m to $C_{\lambda}^{*}(\Gamma) \subset L(\Gamma)$ gives a u.c.p. map $m: C_{\lambda}^{*}(\Gamma) \rightarrow L(\Gamma)$ that extends $m_{\varphi}: \mathbb{C} \Gamma \rightarrow \mathbb{C} \Gamma$. As m is norm-continuous, and $\mathbb{C} \Gamma$ is norm-dense in $C_{\lambda}^{*}(\Gamma)$, we conclude that $m\left(C_{\lambda}^{*}(\Gamma)\right) \subset C_{\lambda}^{*}(\Gamma)$. So $m: C_{\lambda}^{*}(\Gamma) \rightarrow C_{\lambda}^{*}(\Gamma)$ is the desired u.c.p. extension of m_{φ}.

We finally show that m_{φ} extends to a u.c.p. map $m: C^{*}(\Gamma) \rightarrow C^{*}(\Gamma)$. The unitary representation

$$
\Gamma \ni s \mapsto s \otimes s \in \mathcal{U}\left(C^{*}(\Gamma) \otimes C^{*}(\Gamma)\right)
$$

extends, by universality of $C^{*}(\Gamma)$, to a unital *-homomorphism

$$
\Delta: C^{*}(\Gamma) \rightarrow C^{*}(\Gamma) \otimes C^{*}(\Gamma)
$$

As before, let $\operatorname{id}_{C^{*}(\Gamma)} \otimes \omega_{\varphi}: C^{*}(\Gamma) \otimes C^{*}(\Gamma) \rightarrow C^{*}(\Gamma)$ be the slice map determined by the condition $\left(\operatorname{id}_{C^{*}(\Gamma)} \otimes \omega_{\varphi}\right)(x \otimes y)=\omega_{\varphi}(y) x$, for all $x, y \in C^{*}(\Gamma)$. This is a u.c.p. map. Set

$$
m=\left(\operatorname{id}_{C^{*}(\Gamma)} \otimes \omega_{\varphi}\right) \circ \Delta: C^{*}(\Gamma) \rightarrow C^{*}(\Gamma)
$$

and note that m is u.c.p. Then for all $t \in \Gamma$,

$$
m(t)=\left(\operatorname{id}_{C^{*}(\Gamma)} \otimes \omega_{\varphi}\right)(t \otimes t)=\omega_{\varphi}(t)=\varphi(t) t=m_{\varphi}(t)
$$

Hence $m(x)=m_{\varphi}(x)$ for all $x \in \mathbb{C} \Gamma$, so m extends m_{φ}.
$\mathbf{(4)} \Rightarrow \mathbf{(1) : ~ I f ~ (4) ~ h o l d s , ~ t h e n ~} m_{\varphi}: \mathbb{C} \Gamma \rightarrow \mathbb{C} \Gamma$ is u.c.p., where we view $\mathbb{C} \Gamma$ as a subalgebra of $C^{*}(\Gamma), C_{\lambda}^{*}(\Gamma)$ or $L(\Gamma)$, respectively. We show that φ is positive definite. Take $F=\left\{s_{1}, \ldots, s_{n}\right\} \subset \Gamma$. Set

$$
S=\left[\begin{array}{ccc}
s_{1} & \cdots & s_{n} \\
& 0 &
\end{array}\right] \in M_{n}(\mathbb{C} \Gamma), \quad U=\left[\begin{array}{lll}
s_{1} & & \\
& \ddots & \\
& & s_{n}
\end{array}\right] \in M_{n}(\mathbb{C} \Gamma)
$$

Then $S^{*} S=\left[s_{i}^{-1} s_{j}\right]_{i, j} \in M_{n}(\mathbb{C} \Gamma)_{+}$. Since m_{φ} is u.c.p., we get $\left[m_{\varphi}\left(s_{i}^{-1} s_{j}\right)\right]_{i, j} \in M_{n}(\mathbb{C} \Gamma)_{+}$. We claim that

$$
\left[\varphi\left(s_{i}^{-1} s_{j}\right)\right]_{i, j}=U\left[m_{\varphi}\left(s_{i}^{-1} s_{j}\right)\right]_{i, j} U^{*}
$$

This will imply that $\left[\varphi\left(s_{i}^{-1} s_{j}\right)\right]_{i, j} \in M_{n}(\mathbb{C})_{+}$, as wanted. To prove the claim, note that for $k, \ell \in\{1, \ldots, n\}$,

$$
\begin{aligned}
\left(U\left[m_{\varphi}\left(s_{i}^{-1} s_{j}\right)\right]_{i, j} U^{*}\right)_{k, \ell} & =s_{k} m_{\varphi}\left(s_{k}^{-1} s_{\ell}\right) s_{\ell}^{-1} \\
& =s_{k} \varphi\left(s_{k}^{-1} s_{\ell}\right) s_{k}^{-1} s_{\ell} s_{\ell}^{-1}=\varphi\left(s_{k}^{-1} s_{\ell}\right)
\end{aligned}
$$

which is the (k, ℓ) entry in $\left[\varphi\left(s_{i}^{-1} s_{j}\right)\right]_{i, j}$.

We will need the next result in the proof of Proposition 5.16 below:
Lemma 5.15. Let $\Lambda \subset \Gamma$ be a subgroup and let $\varphi_{0}: \Lambda \rightarrow \mathbb{C}$ be a positive definite function. Let $\varphi: \Gamma \rightarrow \mathbb{C}$ be given by

$$
\varphi(s)=\left\{\begin{array}{cl}
\varphi_{0}(s) & \text { if } s \in \Lambda \\
0 & \text { if } s \notin \Lambda
\end{array}\right.
$$

Then φ is positive definite.
Proof. Let $F \subset \Gamma$ be a finite set. As Γ is the disjoint union of left cosets, there exist $g_{1}, \ldots, g_{n} \in \Gamma$ such that

$$
F \subseteq g_{1} \Lambda \dot{\cup} \cdots \dot{\cup} g_{k} \Lambda
$$

Set $F_{i}=F \cap g_{i} \Lambda, i=1, \ldots, k$. If $s \in F_{i}$ and $t \in F_{j}, i \neq j$, then $s^{-1} t \notin \Lambda$, so $\varphi\left(s^{-1} t\right)=0$. This shows that

$$
\left[\varphi\left(s^{-1} t\right)\right]_{s, t \in F}=\bigoplus_{i=1}^{k}\left[\varphi\left(s^{-1} t\right)\right]_{s, t \in F_{i}}
$$

where the right hand side is the block-diagonal matrix with k blocks $\left[\varphi\left(s^{-1} t\right)\right]_{s, t \in F_{i}}$. This matrix is positive if and only if $\left[\varphi\left(s^{-1} t\right)\right]_{s, t \in F_{i}}$ is positive for all $i=1, \ldots, k$. Set $G_{i}=g_{i}^{-1} F_{i} \subset \Lambda$. If $s, t \in F_{i}$, then $s=g_{i} s_{0}, t=g_{i} t_{0}$, where $s_{0}, t_{0} \in G_{i}$ and $s^{-1} t=s_{0}^{-1} t_{0}$. This shows that

$$
\left[\varphi\left(s^{-1} t\right)\right]_{s, t \in F_{i}}=\left[\varphi_{0}\left(s_{0}^{-1} t_{0}\right)\right]_{s_{0}, t_{0} \in G_{i}}
$$

for all $i=1, \ldots, k$. The right hand side is positive because φ_{0} is positive definite on Λ.

We are now ready to prove the following:
Proposition 5.16 (Proposition 2.5.8, [BO]). Let $\Lambda \subset \Gamma$ be a subgroup. Then there exists a canonical inclusion

$$
C^{*}(\Lambda) \subset C^{*}(\Gamma)
$$

Proof. By universality of $C^{*}(\Lambda)$, whenever B is a unital C^{*}-algebra and $\pi_{0}: \Lambda \rightarrow \mathcal{U}(B)$ is a unitary representation, there exists a (unique) ${ }^{*}$-homomorphism $\pi: C^{*}(\Lambda) \rightarrow B$ such that $\pi(t)=\pi_{0}(t)$ for all $t \in \Lambda$. Hence there exists a unique ${ }^{*}$-homomorphism $\pi: C^{*}(\Lambda) \rightarrow C^{*}(\Gamma)$ such that $\pi(t)=t$ for all $t \in \Lambda \subset \Gamma$. We must show that π is injective.
Let $x \in C^{*}(\Lambda), x \geq 0, x \neq 0$. It suffices to show that $\pi(x) \neq 0$. There is a state ω on $C^{*}(\Lambda)$ such that $\omega(x) \neq 0$. Let $\varphi_{0}: \Lambda \rightarrow \mathbb{C}$ be given by $\varphi_{0}(t)=\omega(t), t \in \Lambda$. Then φ_{0} is positive definite on Λ (by the Remark after Definition 5.11). By the Lemma above, φ_{0} extends to a positive definite function $\varphi: \Gamma \rightarrow \mathbb{C}$, and by $(1) \Rightarrow(3)$ in Theorem $5.14, \omega_{\varphi}$ extends to a state on $C^{*}(\Gamma)$. For each $t \in \Lambda$,

$$
\left(\omega_{\varphi} \circ \pi\right)(t)=\omega_{\varphi}(t)=\varphi(t)=\varphi_{0}(t)=\omega(t)
$$

By continuity and linearity, this implies that $\omega_{\varphi} \circ \pi=\omega$. Hence $\left(\omega_{\varphi} \circ \pi\right)(x)=\omega(x) \neq 0$, so $\pi(x) \neq 0$, as desired.

Lecture 6 (continued), GOADyn

September 27, 2021

Comments on sections 3.4-3.9

Recall from Section 3.3 (see hand-written notes-Lecture 6 -on Tensor products):
Let A and B be C^{*}-algebras.
Definition 6.1 (Definition 3.3.1, $[\mathrm{BO}]$). A C^{*}-norm $\|\cdot\|_{\alpha}$ on $A \odot B$ is a norm such that

$$
\|x y\|_{\alpha} \leq\|x\|_{\alpha}\|y\|_{\alpha}, \quad\left\|x^{*}\right\|_{\alpha}=\|x\|_{\alpha}, \quad\left\|x^{*} x\right\|_{\alpha}=\|x\|_{\alpha}^{2}, \quad x, y \in A \odot B
$$

We denote by $A \odot_{\alpha} B$ the completion of $A \odot B$ with respect to $\|\cdot\|_{\alpha}$.
Lemma 6.2 (Lemma 3.4.10, $[\mathrm{BO}]$). Any C^{*}-norm $\|\cdot\|_{\alpha}$ on $A \odot B$ is a cross-norm, i.e.,

$$
\|x \otimes y\|_{\alpha}=\|a\|\|b\|, \quad a \otimes b \in A \odot B
$$

Proof. To be discussed in lecture.

C*-norms on algebraic tensor products do exist. The two most natural of them are the following:

- Maximal norm (Definition 3.3.3. [BO]): Given $x \in A \odot B$, set

$$
\|x\|_{\max }:=\sup \left\{\|\pi(x)\| \mid \pi: A \odot B \rightarrow B(H) \text { is a }(\text { cyclic })^{*} \text {-homomorphism }\right\} .
$$

- Minimal (or spatial) norm (Definition 3.3.4. [BO]): If $\pi: A \rightarrow B(H), \sigma: B \rightarrow B(K)$ are faithful representations and $x=\sum_{i=1}^{n} a_{i} \otimes b_{i} \in A \odot B$, then

$$
\left\|\sum a_{i} \otimes b_{i}\right\|_{\min }:=\left\|\sum \pi\left(a_{i}\right) \otimes \sigma\left(b_{i}\right)\right\|_{B(H \otimes K)}
$$

We have seen that $\|\cdot\|_{\text {min }}$ is independent of the choice of faithful representations, and that $\|\cdot\|_{\text {min }}$ and $\|\cdot\|_{\max }$ are, indeed, $\left(\mathrm{C}^{*}\right.$-)norms on $A \odot B$. We denote by $A \otimes_{\max } B$ and $A \otimes_{\min } B$ (or, simply $A \otimes B$ in $[\mathrm{BO}])$ the completion of $A \odot B$ with respect to the norms $\|\cdot\|_{\max }$ and $\|\cdot\|_{\min }$, respectively. Another important feature of the maximal tensor product is the following universal property:

Proposition 6.3 (Proposition 3.3.7, [BO]). If $\pi: A \odot B \rightarrow C$ is $a *$-homomorphism, then there is a unique $*$-homomorphism $\tilde{\pi}: A \otimes_{\max } B \rightarrow C$ which extends π.

As a consequence, we have the following result:
Corollary 6.4 (Corollary $3.3 .8,[\mathrm{BO}])$. The maximal norm $\|\cdot\|_{\max }$ is the largest C^{*}-norm on $A \odot B$.
A much harder result to prove is the following:
Theorem 6.5 (Takesaki, Theorem 3.4.8, $[\mathrm{BO}]$). The minimal norm $\|\cdot\|_{\min }$ is the smallest C^{*}-norm on $A \odot B$.

Proof. To be discussed in lecture.

As a consequence of Takesaki's theorem and the universality property of $\|\cdot\|_{\max }$, we obtain the following:

Corollary 6.6 (Corollary 3.4.9, [BO]). For any C^{*}-norm $\|\cdot\|_{\alpha}$ on $A \odot B$, there are natural surjective homomorphisms

$$
A \otimes_{\max } B \rightarrow A \otimes_{\alpha} B \rightarrow A \otimes_{\min } B
$$

where $A \otimes_{\alpha} B$ is the completion of $A \odot B$ in the norm $\|\cdot\|_{\alpha}$.
The next result, whose proof we omit, concerns continuity of tensor product maps:
Theorem 6.7 (Continuity of tensor product maps, Theorem 3.5.3, $[\mathrm{BO}]$). Let A, B, C, D be C^{*}-algebras and $\varphi: A \rightarrow C, \psi: B \rightarrow D$ be c.p. maps. Then $\varphi \odot \psi: A \odot B \rightarrow C \odot D$ extends to c.p. maps

$$
\begin{gathered}
\varphi \otimes_{\max } \psi: A \otimes_{\max } B \rightarrow C \otimes_{\max } D \\
\varphi \otimes_{\min } \psi: A \otimes_{\min } B \rightarrow C \otimes_{\min } D
\end{gathered}
$$

Moreover, $\left\|\varphi \otimes_{\max } \psi\right\|=\left\|\varphi \otimes_{\min } \psi\right\|=\|\varphi\|\|\psi\|$.
We are now ready to discuss nuclearity in terms of tensor products:
Proposition 6.8 (Proposition 3.6.12, [BO]). If A is nuclear, then for all C^{*}-algebras C,

$$
A \otimes_{\max } C=A \otimes_{\min } C
$$

Proof. The proof below follows the proof of Lemma 3.6.2 in Brown-Ozawa. First note that

$$
M_{n}(\mathbb{C}) \otimes_{\max } C=M_{n}(\mathbb{C}) \otimes_{\min } C
$$

because $M_{n}(\mathbb{C}) \odot C \cong M_{n}(C)$ (cf. Exercise 3.1.3, $\left.[\mathrm{BO}]\right)$ and $M_{n}(C)$ has a unique C^{*}-norm. Since A is nuclear, there exist nets $\left(\varphi_{i}\right)_{i \in I},\left(\psi_{i}\right)_{i \in I}$ of c.c.p. maps

$$
\varphi_{i}: A \rightarrow M_{k(i)}(\mathbb{C}), \quad \psi_{i}: M_{k(i)}(\mathbb{C}) \rightarrow A
$$

such that $\left\|\psi_{i} \circ \varphi_{i}(a)-a\right\| \rightarrow 0$ for all $a \in A$. Using (\star) and Theorem 6.7 we get that

$$
\sigma_{i}=\left(\psi_{i} \otimes_{\max } \mathrm{id}_{C}\right) \circ\left(\varphi_{i} \otimes_{\min } \mathrm{id}_{C}\right)
$$

is a well-defined c.c.p. map from $A \otimes_{\min } C$ to $A \otimes_{\max } C$. In particular, $\left\|\sigma_{i}\right\| \leq 1$. Since

$$
\sigma_{i}(a \otimes c)=\left(\psi_{i} \circ \varphi_{i}\right)(a) \otimes c, \quad a \in A, c \in C
$$

we have for all $n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in A$ and $c_{1}, \ldots, c_{n} \in C$ that

$$
\sigma_{i}\left(\sum_{k=1}^{n} a_{k} \otimes c_{k}\right)=\sum_{k=1}^{n}\left(\varphi_{i} \circ \psi_{i}\right)\left(a_{k}\right) \otimes c_{k}
$$

and hence

$$
\left\|\sum_{k=1}^{n}\left(\varphi_{i} \circ \psi_{i}\right)\left(a_{k}\right) \otimes c_{k}\right\|_{\max } \leq\left\|\sum_{k=1}^{n} a_{k} \otimes c_{k}\right\|_{\min }
$$

But since $\left\|\psi_{i} \circ \varphi_{i}\left(a_{k}\right)-a_{k}\right\| \rightarrow 0$ and since $\|\cdot\|_{\max }$ is a cross-norm (by Lemma 8.2 above), we get

$$
\left\|\sum_{k=1}^{n} a_{k} \otimes c_{k}\right\|_{\max }=\lim _{i}\left\|\sum_{k=1}^{n}\left(\varphi_{i} \circ \psi_{i}\right)\left(a_{k}\right) \otimes c_{k}\right\|_{\max } \leq\left\|\sum_{k=1}^{n} a_{k} \otimes c_{k}\right\|_{\min }
$$

Hence $\|\cdot\|_{\max } \leq\|\cdot\|_{\min }$ on $A \odot C$, and therefore the two norms coincide. In other words, we have proved that $A \otimes_{\max } C=A \otimes_{\min } C$.

Theorem 6.9 (Choi/Effros, Kirchberg 1973, Theorem 3.8.7, [BO]). For a C^{*}-algebra A, the following are equivalent:
(1) A is nuclear (i.e., id_{A} is a nuclear map).
(2) For every C^{*}-algebra C,

$$
A \otimes_{\max } C=A \otimes_{\min } C
$$

Remark 6.10. $(1) \Rightarrow(2)$ is already proved above. The proof of $(2) \Rightarrow(1)$ is very involved (see Section 3.8).

Remark 6.11. Condition (2) above was the original definition of a nuclear C^{*}-algebra A, due to C. Lance (1973).

§3.7. Exact sequences

A sequence

$$
X_{0} \xrightarrow{\delta_{1}} X_{1} \xrightarrow{\delta_{2}} X_{2} \xrightarrow{\delta_{3}} \cdots \xrightarrow{\delta_{n}} X_{n}
$$

of vector spaces $\left(X_{i}\right)_{i=0}^{n}$ and linear maps $\delta_{i}: X_{i-1} \rightarrow X_{i}$ is called exact if

$$
\operatorname{Im}\left(\delta_{i}\right)=\operatorname{Ker}\left(\delta_{i+1}\right), \quad i=1, \ldots, n-1
$$

If

$$
0 \xrightarrow{\delta_{1}} X_{1} \xrightarrow{\delta_{2}} X_{2} \xrightarrow{\delta_{3}} X_{3} \xrightarrow{\delta_{4}} 0 \text { is a short exact sequence, }
$$

then $\delta_{1}=\delta_{4}=0, \delta_{2}$ is one-to-one, δ_{3} is surjective, and since $\operatorname{Im}\left(\delta_{2}\right)=\operatorname{Ker}\left(\delta_{3}\right)$, we have

$$
X_{3} \cong X_{2} / \operatorname{Im}\left(\delta_{2}\right)
$$

If we think of δ_{2} as an inclusion map and δ_{3} as a quotient map, then (\star) is just another way of writing $X_{1} \subset X_{2}$ and $X_{3}=X_{2} / X_{1}$.

Definition 6.12. We call

$$
0 \longrightarrow J \longrightarrow A \longrightarrow C \longrightarrow 0
$$

a short exact sequence of C^{*}-algebras if J is a closed two-sided ideal in A and $C=A / J$.
Remark 6.13. Let

$$
0 \longrightarrow J \longrightarrow A \longrightarrow A / J \longrightarrow 0
$$

be a short exact sequence of C^{*}-algebras. Then it is easy to check that for all C^{*}-algebras B,

$$
0 \longrightarrow J \odot B \longrightarrow A \odot B \longrightarrow(A / J) \odot B \longrightarrow 0
$$

is an exact sequence of algebras, i.e. $J \odot B$ is a two-sided ideal in $A \odot B$, and

$$
(A \odot B) /(J \odot B)=(A / J) \odot B
$$

Proposition 6.14 (Proposition 3.7.1, [BO]). Let

$$
0 \longrightarrow J \longrightarrow A \longrightarrow A / J \longrightarrow 0
$$

be a short exact sequence of C^{*}-algebras. Then for all every C^{*}-algebra B,

$$
0 \longrightarrow J \otimes_{\max } B \longrightarrow A \otimes_{\max } B \longrightarrow(A / J) \otimes_{\max } B \longrightarrow 0
$$

is also a short exact sequence of C^{*}-algebras.
Proposition 6.15 (Proposition 3.7.2, [BO]). Given $J \triangleleft A$ and B as above, then there exists a C^{*}-norm $\|\cdot\|_{\alpha}$ on $(A / J) \odot B$ such that

$$
0 \longrightarrow J \otimes_{\min } B \longrightarrow A \otimes_{\min } B \longrightarrow(A / J) \otimes_{\alpha} B \longrightarrow 0
$$

is an exact sequence.
Theorem 6.16 (Kirchberg, Theorem 3.9.1, [BO]). Let B be a C^{*}-algebra. Then the following are equivalent:
(1) B is exact.
(2) For every pair (A, J) of a C^{*}-algebra A and a closed two-sided ideal $J \triangleleft A$, the sequence

$$
0 \longrightarrow J \otimes_{\min } B \longrightarrow A \otimes_{\min } B \longrightarrow(A / J) \otimes_{\min } B \longrightarrow 0
$$

is exact.
Remark 6.17. $(1) \Rightarrow(2)$ is proved in Proposition 3.7.8 [BO]. The proof of $(2) \Rightarrow(1)$ is very involved (see Section 3.9).

Remark 6.18. Condition (2) above was Kirchberg's original definition of an exact C^{*}-algebra B.
Remark 6.19. A C^{*}-algebra B is exact if and only if (2) holds for the pair

$$
(A, J)=(\mathbb{B}(H), \mathbb{K}(H))
$$

where H is a separable, infinite-dimensional Hilbert space (cf. Exercise 3.9.7, [BO]).

Lectures 7 and 8, GOADyn
 September 30 and October 5, 2021

Section 2.6: Amenable groups

In the following, let Γ be a discrete group.
Definition 7.1 (Definition 2.6.1, $[\mathrm{BO}]$). The group Γ is called amenable if there exists a state (=mean) μ on $\ell^{\infty}(\Gamma)$ such that for all $s \in \Gamma$ and all $f \in \ell^{\infty}(\Gamma)$,

$$
\mu(s . f)=\mu(f)
$$

where $(s . f)(t)=f\left(s^{-1} t\right), t \in \Gamma$, i.e., μ is invariant under the left action of Γ.

We will begin by proving that this is equivalent to the original definition of amenability given by John von Neumann. (In what follows, $\mathcal{P}(\Omega)$ denotes the power set of Ω.)

Theorem 7.2. A group Γ is amenable if and only if there exists a finitely additive left-invariant measure $\mu: \mathcal{P}(\Gamma) \rightarrow[0,1]$ such that $\mu(\Gamma)=1$.

Definition 7.3. Let Ω be a set. A map $\mu: \mathcal{P}(\Omega) \rightarrow[0,1]$ is a finitely additive probability measure on Ω if $\mu(\Omega)=1$ and $\mu(A \cup B)=\mu(A)+\mu(B)$ whenever A and B are disjoint subsets of Ω.
Let $\operatorname{PM}(\Omega)$ denote the set of all finitely additive probability measures on Ω.
Example 7.4. Let $F \subseteq \Omega$ be a finite subset, and define $\mu_{F}: \mathcal{P}(\Omega) \rightarrow[0,1]$ by

$$
\mu_{F}(A)=\frac{|A \cap F|}{|F|}, \quad A \subset \Omega
$$

Then $\mu_{F} \in P M(\Omega)$.
Let $\mathrm{M}(\Omega)$ be the set of all states (means) on $\ell^{\infty}(\Omega)$, so that $\mathrm{M}(\Omega) \subset\left(\ell^{\infty}(\Omega)\right)_{1}^{*}$. We shal see that there exists a one-to-one correspondence between $\mathrm{M}(\Omega)$ and $\operatorname{PM}(\Omega)$:
For each $m \in \mathrm{M}(\Omega)$ let $\hat{m}: \mathcal{P}(\Omega) \rightarrow[0,1]$ be defined by $\widehat{m}(A)=m\left(1_{A}\right)$, for all $A \subset \Omega$. Note that $\widehat{m} \in \operatorname{PM}(\Omega)$. Let $\Phi: \mathrm{M}(\Omega) \rightarrow \operatorname{PM}(\Omega)$ be given by $\Phi(m)=\widehat{m}$.
Claim. Φ is bijective.
For the proof, we need several facts.
(1) Let $\mathrm{E}(\Omega)$ denote the collection of all simple maps on Ω, i.e., maps $x: \Omega \rightarrow \mathbb{R}$ such that $x(\Omega)$ is finite. Then $\mathrm{E}(\Omega)$ is a subspace of $\ell^{\infty}(\Omega)$, which moreover is dense in $\ell^{\infty}(\Omega)$ with respect to $\|\cdot\|_{\infty}$. This means that each $x \in \ell^{\infty}(\Omega)$ is the uniform limit of simple functions.
(2) Let $\mu \in \operatorname{PM}(\Omega)$. Define $\bar{\mu}: \mathrm{E}(\Omega) \rightarrow \mathbb{R}$ by

$$
\bar{\mu}(x)=\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i}\right), \quad x=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}
$$

where $\left(A_{i}\right)_{i=1}^{n}$ is a finite partition of Ω. Note that $\bar{\mu}(x) \geq 0$ whenever $x \geq 0$. Then $\bar{\mu}: \mathrm{E}(\Omega) \rightarrow \mathbb{R}$ is a linear contraction. The latter follows from

$$
|\bar{\mu}(x)| \leq \sup _{\omega \in \Omega}|x(\omega)|=\|x\|_{\infty}, \quad x \in \mathrm{E}(\Omega)
$$

By (1), $\bar{\mu}$ extends uniquely to some $\widetilde{\mu} \in \mathrm{M}(\Omega)$.
We show $\Phi(\widetilde{\mu})=\mu$, for all $\mu \in \operatorname{PM}(\Omega)$, which will prove that Φ is surjective. Indeed, for $A \subset \Omega$,

$$
\Phi(\widetilde{\mu})(A)=\widetilde{\mu}\left(1_{A}\right)=\bar{\mu}\left(1_{A}\right)=\mu(A) .
$$

To show that Φ is injective, let $m_{1}, m_{2} \in \mathrm{M}(\Omega)$ be such that $\Phi\left(m_{1}\right)=\Phi\left(m_{2}\right)$. Then $\widehat{m}_{1}=\widehat{m}_{2}$, i.e., $m_{1}\left(1_{A}\right)=m_{2}\left(1_{A}\right)$ for all $A \subset \Omega$. By linearity, $m_{1}=m_{2}$ on $\mathrm{E}(\Omega)$, which by (1) and continuity implies $m_{1}=m_{2}$ on $\ell^{\infty}(\Omega)$.

Now assume that $\Omega=\Gamma$ is a group. Given $\mu \in \operatorname{PM}(\Gamma)$ and $g \in \Gamma$, define $g \mu: \mathcal{P}(\Gamma) \rightarrow[0,1]$ by

$$
g \mu(A)=\mu\left(g^{-1} A\right), \quad A \subset \Gamma
$$

Note that $g \mu \in \operatorname{PM}(\Gamma)$. Indeed, $g \mu(\Gamma)=\mu\left(g^{-1} \Gamma\right)=\mu(\Gamma)=1$, and if $A, B \subset \Gamma$ are disjoint, then

$$
g \mu(A \cup B)=\mu\left(g^{-1}(A \cup B)\right)=\mu\left(g^{-1} A \cup g^{-1} B\right)=\mu\left(g^{-1} A\right)+\mu\left(g^{-1} B\right)=g \mu(A)+g \mu(B)
$$

We say that μ is left-invariant if $g \mu=\mu$, for all $g \in \Gamma$.
Some further constructions:

- For $x \in \ell^{\infty}(\Gamma)$ and $g \in \Gamma$ let $g x: \Gamma \rightarrow \mathbb{R}$ be given by $(g x)(t)=x\left(g^{-1} t\right), t \in \Gamma$. Then $g x \in \ell^{\infty}(\Gamma)$ with $\|g x\|_{\infty}=\|x\|_{\infty}$.
- For $u \in \ell^{\infty}(\Gamma)^{*}$ and $g \in \Gamma$, let $g u: \ell^{\infty}(\Gamma) \rightarrow \mathbb{R}$ be given by $(g u)(x)=u\left(g^{-1} x\right), x \in \ell^{\infty}(\Gamma)$. Then $g u \in \ell^{\infty}(\Gamma)^{*}$ with $\|g u\|=\|u\|$.

Proof of Theorem 7.2: Let $m \in \mathrm{M}(\Gamma)$. Then m is left-invariant if and only if the associated finitely additive probability measure \widehat{m} is left-invariant. This follows from the fact that $\widehat{g m}=g \widehat{m}$ for all $g \in \Gamma$, which can be verified as follows. For all $A \subset \Gamma$:

$$
\widehat{g m}(A)=g m\left(1_{A}\right)=m\left(g^{-1} 1_{A}\right) \stackrel{(*)}{=} m\left(1_{g^{-1} A}\right)=\widehat{m}\left(g^{-1} A\right)=g \widehat{m}(A)
$$

where $(*)$ holds because $g^{-1} 1_{A}=1_{g^{-1} A}$.
Definition 7.5 (Definition 2.6.2, $[\mathrm{BO}]$). The set of probability measures on Γ is denoted by $\operatorname{Prob}(\Gamma)$, i.e.,

$$
\operatorname{Prob}(\Gamma)=\left\{\mu \in \ell^{1}(\Gamma): \mu \geq 0, \sum_{t \in \Gamma} \mu(t)=1\right\}
$$

Definition 7.6 (Definition 2.6.3, $[\mathrm{BO}]) . \Gamma$ has an approximate invariant mean if for any finite set $E \subset \Gamma$ and every $\varepsilon>0$, there exists $\mu \in \operatorname{Prob}(\Gamma)$ such that

$$
\max _{s \in E}\|s . \mu-\mu\|_{1}<\varepsilon .
$$

Recall that for two sets $E, F \subset \Gamma$,

$$
E \triangle F=(E \cup F) \backslash(E \cap F)=(E \backslash F) \cup(F \backslash E)=(E \backslash(E \cap F)) \cup(F \backslash(E \cap F))
$$

Definition 7.7 (Definition 2.6.4, [BO]). Γ satisfies the Følner condition if for every finite set $E \subset \Gamma$ and $\varepsilon>0$ there exists a finite set $F \subset \Gamma$ such that

$$
\max _{s \in E} \frac{|s F \triangle F|}{|F|}<\varepsilon
$$

where $s F=\{s t: t \in F\}$. A sequence $\left(F_{n}\right)_{n \geq 1}$ of finite subsets of Γ is called a Følner sequence if

$$
\frac{\left|s F_{n} \triangle F_{n}\right|}{\left|F_{n}\right|} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

for all $s \in \Gamma$.
Remark 7.8. Since $|s F \triangle F|=|s F|+|F|-2|s F \cap F|$, the Følner condition is equivalent to

$$
\max _{s \in E} \frac{|s F \cap F|}{|F|}>1-\frac{\varepsilon}{2} .
$$

If Γ satisfies the $\mathrm{F} \varnothing$ lner condition, then Γ has an approximate invariant mean given by normalized characteristic functions of finite subsets. Given $F \subset \Gamma$ a finite subset, then $(1 /|F|) 1_{F} \in \operatorname{Prob}(\Gamma)$ and

$$
\left\|s \cdot \frac{1}{|F|} 1_{F}-\frac{1}{|F|} 1_{F}\right\|_{1}=\frac{|s F \triangle F|}{|F|} .
$$

Example 7.9 (Example 2.6.7, $[\mathrm{BO}]$). \mathbb{F}_{2} (the free group on 2 generators a, b) is non-amenable:

$$
\mathbb{F}_{2}: \quad e, a, a^{-1}, b, b^{-1}, a b, a b^{-1}, a^{2}, a^{-1} b, a^{-1} b^{-1}, \ldots
$$

If $x \in \mathbb{F}_{2}, x \neq e$, then $x=s_{1} s_{2} \cdots s_{n}$ (uniquely), where $s_{i} \in\left\{a, a^{-1}, b, b^{-1}\right\}$ and

$$
\left(s_{i}, s_{i+1}\right) \neq\left(a, a^{-1}\right),\left(a^{-1}, a\right),\left(b, b^{-1}\right),\left(b^{-1}, b\right)
$$

$s_{1} s_{2} \cdots s_{n}$ is called the reduced word of x and $|x|=n$ is called the length of x. To multiply $s_{1} \cdots s_{n} t_{1} \cdots t_{k}$, make a reduction by (successively) removing pairs of the form $\left(a, a^{-1}\right),\left(a^{-1}, a\right),\left(b, b^{-1}\right),\left(b^{-1}, b\right)$. Put

$$
\begin{aligned}
& A^{+}=\{\text {all reduced words starting with } a\} \subset \mathbb{F}_{2} \\
& A^{-}=\left\{\text {all reduced words starting with } a^{-1}\right\} \subset \mathbb{F}_{2} \\
& B^{+}=\{\text {all reduced words starting with } b\} \subset \mathbb{F}_{2} \\
& B^{-}=\left\{\text {all reduced words starting with } b^{-1}\right\} \subset \mathbb{F}_{2}
\end{aligned}
$$

Then
(a) $\mathbb{F}_{2}=A^{+} \cup a A^{-}$(if $x \notin A^{+}$, then either $x=e \in a A^{-}$or x has the reduced form $x=s_{1} \cdots s_{n}, s_{1} \neq a$, so that

$$
x=s_{1} \cdots s_{n}=a\left(a^{-1} s_{1} \cdots s_{n}\right) \in a A^{-}
$$

since $a^{-1} s_{1} \cdots s_{n}$ is reduced).
(b) $\mathbb{F}_{2}=B^{+} \cup b B^{-}$.
(c) $\mathbb{F}_{2}=\{e\} \dot{\cup} A^{+} \dot{\cup} A^{-} \dot{\cup} B^{+} \dot{\cup} B^{-}$.

Assume that μ is a left invariant mean on \mathbb{F}_{2}. Consider $m=\hat{\mu} \in P M\left(\mathbb{F}_{2}\right)$. Then m is left-invariant, so

$$
m(s E)=m(E), \quad s \in \mathbb{F}_{2}, E \in \mathcal{P}\left(\mathbb{F}_{2}\right)
$$

By (a) and (b), $m\left(A^{+}\right)+m\left(A^{-}\right) \geq m\left(\mathbb{F}_{2}\right)=1$ and $m\left(B^{+}\right)+m\left(B^{-}\right) \geq m\left(\mathbb{F}_{2}\right)=1$, and by (c),

$$
1+1 \leq m\left(A^{+}\right)+m\left(A^{-}\right)+m\left(B^{+}\right)+m\left(B^{-}\right) \leq 1
$$

which is obviously wrong! Hence \mathbb{F}_{2} is not amenable.
Theorem 7.10 (Theorem 2.6.8, $[\mathrm{BO}]$). Let Γ be a discrete group. Then the following are equivalent:
(1) Γ is amenable.
(2) Γ has an approximate invariant mean.
(3) Γ satisfies the Følner condition.
(4) The trivial representation τ_{0} is weakly contained in the regular representation, i.e., there exists a net of unit vectors $\xi_{i} \in \ell^{2}(\Gamma)$ such that for all $s \in \Gamma$,

$$
\lim _{i}\left\|\lambda_{s} \xi_{i}-\xi_{i}\right\|_{2}=0
$$

(5) There exists a net $\left(\varphi_{i}\right)_{i \in I}$ of finitely supported positive definite functions on Γ such that $\lim _{i} \varphi_{i}(s)=1$, for all $s \in \Gamma$. (Note: Without loss of generality, we may assume $\varphi_{i}(e)=1$, for all $i \in I$.)
(6) $C^{*}(\Gamma)=C_{\lambda}^{*}(\Gamma)$.
(7) $C_{\lambda}^{*}(\Gamma)$ has a character (a one-dimensional representation).
(8) For any finite set $E \subset \Gamma$,

$$
\left\|\frac{1}{|E|} \sum_{s \in E} \lambda_{s}\right\|=1
$$

(9) $C_{r}^{*}(\Gamma)$ is nuclear.
(10) $L(\Gamma)$ is semidiscrete.

Proof. (1) \Rightarrow (2): We will first prove the following statement:
Claim: For every state μ on $\ell^{\infty}(\Gamma)$ there exists a net $\left(\nu_{i}\right)_{i \in I}$ in $\operatorname{Prob}(\Gamma)$ such that $\nu_{i} \xrightarrow{w^{*}} \mu$, meaning that for all $f \in \ell^{\infty}(\Gamma)$,

$$
\lim _{i} \underbrace{\left(\sum_{s \in \Gamma} f(s) \nu_{i}(s)\right)}_{\nu_{i}(f)}=\mu(f)
$$

This is equivalent to showing that $\mu \in \overline{\operatorname{Prob}(\Gamma)}^{w^{*}}$ (the w^{*}-closure in $\left.\ell^{\infty}(\Gamma)^{*}\right)$. If this was not true, then by the Hahn-Banach separation theorem we could find $f \in \ell^{\infty}(\Gamma)$ such that

$$
\operatorname{Re} \mu(f)>\sup \{\operatorname{Re} \nu(f): \nu \in \operatorname{Prob}(\Gamma)\}
$$

Replacing f by $\operatorname{Re}(f)$ we have a real function $f \in \ell^{\infty}(\Gamma)$ such that $\mu(f)>\sup \{\nu(f): \nu \in \operatorname{Prob}(\Gamma)\}$. Since the Dirac measures δ_{s} given by

$$
\delta_{s}(t)= \begin{cases}1 & s=t \\ 0 & s \neq t\end{cases}
$$

are in $\operatorname{Prob}(\Gamma)$, we have $\mu(f)>\sup \{f(t): t \in \Gamma\}$. Set $f_{0}=f-\sup \{f(t): t \in \Gamma\}$. Then $f_{0} \leq 0$, but $\mu\left(f_{0}\right)=\mu(f)-\sup \{f(t): t \in \Gamma\}>0$, a contradiction! This proves the Claim.

Let μ be a left-invariant state on $\ell^{\infty}(\Gamma)$. By the Claim, let $\left(\nu_{i}\right)_{i \in I}$ be a net in $\operatorname{Prob}(\Gamma)$ such that $\nu_{i} \rightarrow \mu$ weak * (in $\left.\ell^{\infty}(\Gamma)^{*}\right)$. Given $s \in \Gamma$ and $f \in \ell^{\infty}(\Gamma)$, we have

$$
\left(s . \nu_{i}\right)(f)=\sum_{t \in \Gamma}\left(s . \nu_{i}\right)(t) f(t)=\sum_{t \in \Gamma} \nu_{i}\left(s^{-1} t\right) f(t)=\sum_{u \in \Gamma} \nu_{i}(u) f(s u)=\nu_{i}\left(s^{-1} . f\right),
$$

which shows that $\left(s . \nu_{i}\right)(f) \rightarrow \mu\left(s^{-1} . f\right)$. Since μ is left invariant, it follows that for all $s \in \Gamma$,

$$
\text { s. } \nu_{i}-\nu_{i} \rightarrow 0 \text { weak }^{*}
$$

But since $s . \nu_{i}-\nu_{i} \in \ell^{1}(\Gamma)$ and $\ell^{1}(\Gamma)^{*}=\ell^{\infty}(\Gamma)$, then $s . \nu_{i}-\nu_{i}$ actually converges to 0 weakly in $\ell^{1}(\Gamma)$. Now, let $E \subset \Gamma$ be finite, with $E=\left\{s_{1}, \ldots, s_{n}\right\}$. Then

$$
(0, \ldots, 0) \in{\overline{\left\{\left(s_{1} \cdot \nu_{i}-\nu_{i}, \ldots, s_{n} \cdot \nu_{i}-\nu_{i}\right): i \in I\right\}}}^{\text {weak }}
$$

where the weak closure is in

$$
\underbrace{\ell^{1}(\Gamma) \oplus \cdots \oplus \ell^{1}(\Gamma)}_{n \text { times }} \simeq \ell^{1}(\underbrace{\Gamma \dot{\cup} \cdots \dot{\cup} \Gamma}_{n \text { times }})
$$

Since convex sets in a Banach space have the same closure in norm and weak topology, we have

$$
(0, \ldots, 0) \in{\overline{\operatorname{conv}\left\{\left(s_{1} \cdot \nu_{i}-\nu_{i}, \ldots, s_{n} \cdot \nu_{i}-\nu_{i}\right): i \in I\right\}}}^{\text {norm }}
$$

Therefore, there exists a net $\left(\mu_{j}\right)_{j \in J}$ in $\operatorname{conv}\left\{\nu_{i}: i \in I\right\}$ such that

$$
\left\|s_{1} \cdot \mu_{j}-\mu_{j}\right\|_{1}+\ldots+\left\|s_{n} \cdot \mu_{j}-\mu_{j}\right\|_{1} \rightarrow 0
$$

Hence for all $\varepsilon>0$ there exists $j \in J$ such that such that

$$
\max _{s \in E}\left\|s . \mu_{j}-\mu_{j}\right\|_{1} \leq \sum_{s \in E}\left\|s . \mu_{j}-\mu_{j}\right\|_{1}<\varepsilon
$$

This completes the proof of $(1) \Rightarrow(2)$.
$\mathbf{(2)} \Rightarrow \mathbf{(3) :}$ Let $E \subset \Gamma$ be finite and let $\varepsilon>0$ be given. Choose $\mu \in \operatorname{Prob}(\Gamma)$ such that $\max _{s \in E}\|s . \mu-\mu\|_{1}<$ $\varepsilon /|E|$ and hence

$$
\sum_{s \in E}\|s . \mu-\mu\|_{1}<\varepsilon .
$$

Assume that $f \in \ell^{1}(\Gamma)_{+}, r \geq 0$. Set

$$
F(f, r)=\{t \in \Gamma: f(t)>r\} .
$$

Note that for $f, h \in \ell^{1}(\Gamma)_{+}$,

$$
\left|1_{F(f, r)}(t)-1_{F(h, r)}(t)\right|= \begin{cases}0 & \text { if } f(t), h(t) \leq r \text { or } f(t), h(t)>r \\ 1 & \text { if } h(t) \leq r<f(t) \text { or } f(t) \leq r<h(t)\end{cases}
$$

Thus if both $f \leq 1$ and $h \leq 1$, we can see (after some computations) that

$$
|f(t)-h(t)|=\int_{0}^{1}\left|1_{F(f, r)}(t)-1_{F(h, r)}(t)\right| d r
$$

Let $\mu \in \operatorname{Prob}(\Gamma)$. Then $\mu \in \ell^{1}(\Gamma)_{+}$and $\sum_{s \in \Gamma} \mu(s)=1$. Hence $\mu(s) \leq 1$ for all $s \in \Gamma$. Therefore

$$
\begin{aligned}
\|s . \mu-\mu\|_{1} & =\sum_{t \in \Gamma} \mid(s . \mu(t)-\mu(t) \mid \\
& =\sum_{t \in \Gamma} \int_{0}^{1}\left|1_{F(s . \mu, r)}(t)-1_{F(\mu, r)}(t)\right| d r \\
& =\int_{0}^{1} \sum_{t \in \Gamma}\left|1_{F(s . \mu, r)}(t)-1_{F(\mu, r)}(t)\right| d r \\
& =\int_{0}^{1}|F(s . \mu, r) \triangle F(\mu, r)| d r .
\end{aligned}
$$

Since $F(s . \mu, r)=\{t \in \Gamma:(s . \mu)(t)>r\}=\left\{t \in \Gamma: \mu\left(s^{-1} t\right)>r\right\}=\left\{t \in \Gamma: s^{-1} t \in F(\mu, r)\right\}=\{t \in \Gamma:$ $t \in s F(\mu, r)\}=s F(\mu, r)$, we have

$$
\|s . \mu-\mu\|_{1}=\int_{0}^{1}|s F(\mu, r) \triangle F(\mu, r)| d r .
$$

Using that

$$
1_{F(\mu, r)}(t)= \begin{cases}0 & \text { if } \mu(t) \leq r \\ 1 & \text { if } \mu(t)>r\end{cases}
$$

a similar (but simpler) computation gives

$$
1=\|\mu\|_{1}=\sum_{t \in \Gamma} \mu(t)=\sum_{t \in \Gamma} \int_{0}^{1} 1_{F(\mu, r)}(t) d r=\int_{0}^{1}|F(\mu, r)| d r
$$

Therefore,

$$
\varepsilon \int_{0}^{1}|F(\mu, r)| d r=\varepsilon>\sum_{s \in E}\|s . \mu-\mu\|_{1}=\int_{0}^{1} \sum_{s \in E}|s F(\mu, r) \triangle F(\mu, r)| d r .
$$

Hence for some $r \in(0,1)$,

$$
\varepsilon|F(\mu, r)|>\sum_{s \in E}|s F(\mu, r) \triangle F(\mu, r)|
$$

Hence with $F=F(\mu, r)$, for this particular r, we have

$$
\varepsilon|F|>|s F \triangle F|, \quad s \in E
$$

In particular, $|F|>0$. Moreover $|F|<\infty$, because when $r>0$,

$$
|F(\mu, r)| \leq \frac{1}{r} \sum_{t \in F(\mu, r)} \mu(t) \leq \frac{1}{r} \sum_{t \in \Gamma} \mu(t)=\frac{1}{r}<\infty
$$

Thus we have found a non-empty set F such that

$$
\frac{|s F \triangle F|}{|F|}<\varepsilon
$$

for all $s \in E$, i.e., Γ satisfies the Følner condition.
$\mathbf{(3)} \Rightarrow \mathbf{(4)}: \mathrm{By}(3)$, there exists a net $\left(F_{i}\right)$ of non-empty finite subsets of Γ such that

$$
\frac{\left|s F_{i} \triangle F_{i}\right|}{\left|F_{i}\right|} \rightarrow 0
$$

for all $s \in \Gamma$. Now put $\xi_{i}=\left|F_{i}\right|^{-1 / 2} 1_{F_{i}}$. Then $\left\|\xi_{i}\right\|_{2}=1$ and

$$
\lambda_{s} \xi_{i}-\xi_{i}=s . \xi_{i}-\xi_{i}=\frac{1}{\left|F_{i}\right|^{1 / 2}}\left(1_{s F_{i}}-1_{F_{i}}\right)
$$

Thus

$$
\left\|\lambda_{s} \xi_{i}-\xi_{i}\right\|_{2}^{2}=\frac{1}{\left|F_{i}\right|} \sum_{t \in \Gamma}\left(1_{s F_{i}}-1_{F_{i}}\right)^{2}(t)=\frac{\left|s F_{i} \triangle F_{i}\right|}{\left|F_{i}\right|} \rightarrow 0
$$

which proves the assertion.
$\mathbf{(4)} \Rightarrow \mathbf{(5)}$: Put $\varphi_{i}(s)=\left\langle\lambda_{s} \xi_{i}, \xi_{i}\right\rangle, s \in \Gamma$. Then by Theorem 5.14 (Theorem 2.5.11, [BO]), φ_{i} is positive definite and $\varphi_{i}(e)=\left\|\xi_{i}\right\|^{2}=1$. Moreover, $\varphi_{i}(s)=\left\langle\lambda_{s} \xi_{i}-\xi_{i}, \xi_{i}\right\rangle+\left\langle\xi_{i}, \xi_{i}\right\rangle=\left\langle\lambda_{s} \xi_{i}-\xi_{i}, \xi_{i}\right\rangle+1$. Hence, for all $s \in \Gamma$,

$$
\left|\varphi_{i}(s)-1\right|=\left|\left\langle\lambda_{s} \xi_{i}-\xi_{i}, \xi_{i}\right\rangle\right| \leq\left\|\lambda_{s} \xi_{i}-\xi_{i}\right\|\left\|\xi_{i}\right\|=\left\|\lambda_{s} \xi_{i}-\xi_{i}\right\| \rightarrow 0
$$

Does φ_{i} have finite support? NO, not in general. But since $\xi_{i} \in \ell^{2}(\Gamma)$, then for all $n \in \mathbb{N}$ there exists a finitely supported $\xi_{i, n} \in \ell^{2}(\Gamma)$ such that $\left\|\xi_{i}-\xi_{i, n}\right\|_{2}<1 / n$ and $\left\|\xi_{i, n}\right\|_{2}=1$. Set

$$
\varphi_{i, n}(s)=\left\langle\lambda_{s} \xi_{i, n}, \xi_{i, n}\right\rangle
$$

Clearly $\varphi_{i, n}(s) \rightarrow \varphi_{i}(s)$ as $n \rightarrow \infty$ (for all $s \in \Gamma$) and $\varphi_{i, n}$ has finite support because

$$
\operatorname{supp}\left(\varphi_{i, n}\right) \subset\left\{s \in \Gamma: \exists x, y \in \operatorname{supp}\left(\xi_{i, n}\right): s x=y\right\}=\left\{y x^{-1}: x, y \in \operatorname{supp}\left(\xi_{i, n}\right)\right\}
$$

and the latter set is finite. Let $P_{1}(\Gamma)$ be the set of positive definite functions φ on Γ with $\varphi(e)=1$ and $C_{c}(\Gamma)$ be the set of finitely supported functions on Γ. Again by Theorem 6.14 (Theorem 2.5.11, [BO]), $\varphi_{i, n} \in P_{1}(\Gamma) \cap C_{c}(\Gamma)$, so $\varphi_{i} \in \overline{P_{1}(\Gamma) \cap C_{c}(\Gamma)}$ and finally $1 \in \overline{P_{1}(\Gamma) \cap C_{c}(\Gamma)}$ (here 1 is the constant function 1), where the closures are in the topology of pointwise convergence of functions. Hence there exists a net $\left(\psi_{j}\right)_{j \in J}$ in $P_{1}(\Gamma) \cap C_{c}(\Gamma)$ such that $\psi_{j}(s) \rightarrow 1$ for all $s \in \Gamma$, proving (5).
$(5) \Rightarrow(6):$ Since λ is a unitary representation of Γ, λ extends to a *-homomorphism $\tilde{\lambda}$:

and the range of $\tilde{\lambda}$ is dense in $C_{\lambda}^{*}(\Gamma)$ because it contains $\mathbb{C} \Gamma$. Hence by standard C^{*}-algebra theory (see, e.g., Zhu's book, Theorem 11.1), $\tilde{\lambda}$ maps $C^{*}(\Gamma)$ onto $C_{\lambda}^{*}(\Gamma)$. To prove $(5) \Rightarrow(6)$ we will show that if there exists a net $\left(\varphi_{i}\right)_{i \in I}$ in $P_{1}(\Gamma) \cap C_{c}(\Gamma)$, converging pointwise to 1 , then

$$
\operatorname{Ker}(\tilde{\lambda})=0,
$$

so that $\tilde{\lambda}$ becomes a ${ }^{*}$-isomorphism. Let $\left(\varphi_{i}\right)_{i \in I}$ be such a net and let

$$
m_{\varphi_{i}}: C^{*}(\Gamma) \rightarrow C^{*}(\Gamma), \quad \bar{m}_{\varphi_{i}}: C_{\lambda}^{*}(\Gamma) \rightarrow C_{\lambda}^{*}(\Gamma)
$$

be the corresponding u.c.p. multipliers on $C^{*}(\Gamma)$ and $C_{\lambda}^{*}(\Gamma)$ from Theorem 6.14 (4). Then the diagram

commutes. For this, it is enough to check that for $s \in \Gamma \subset C^{*}(\Gamma)$,

$$
\bar{m}_{\varphi_{i}} \circ \tilde{\lambda}(s)=\bar{m}_{\varphi_{i}}(\tilde{\lambda}(s))=\varphi_{i}(s) \lambda(s)=m_{\varphi_{i}}(\tilde{\lambda}(s))
$$

From the commutativity of (\star) we have

$$
m_{\varphi_{i}}(\operatorname{Ker}(\tilde{\lambda})) \subset \operatorname{Ker}(\tilde{\lambda})
$$

Set $E_{i}=\operatorname{supp}\left(\varphi_{i}\right)$. Then $\left|E_{i}\right|<\infty$ and since for $s \in \Gamma \subset C^{*}(\Gamma), m_{\varphi_{i}}(s)=\varphi_{i}(s) s \in \operatorname{Span}\left\{s: s \in E_{i}\right\}$, we have

$$
m_{\varphi_{i}}\left(C^{*}(\Gamma)\right) \subset \overline{\operatorname{Span}\left\{s: s \in E_{i}\right\}}=\operatorname{Span}\left\{s: s \in E_{i}\right\}
$$

since finite-dimensional subspaces are automatically closed. Note also that since $\lim _{i}\left\|m_{\varphi_{i}}(s)-s\right\|=$ $\lim _{i}\left|\varphi_{i}(s)-1\right|=0$, for all $s \in \Gamma$ and $\left\|m_{\varphi_{i}}\right\| \leq 1$ for all i, we have

$$
\lim _{i}\left\|m_{\varphi_{i}}(a)-a\right\|=0, \quad a \in C^{*}(\Gamma)
$$

Assume now that $a \in \operatorname{Ker}(\tilde{\lambda})$. By $(\star \star \star), m_{\varphi_{i}}(a)=\sum_{s \in E_{i}} c_{s}^{(i)} s$ for suitable complex numbers $c_{s}^{(i)}$. Moreover, by $(\star \star), \tilde{\lambda}\left(m_{\varphi_{i}}(a)\right)=0$. Hence

$$
0=\tilde{\lambda}\left(\sum_{s \in E_{i}} c_{s}^{(i)} s\right)=\sum_{s \in E_{i}} c_{s}^{(i)} \lambda(s)
$$

and thus

$$
\sum_{s \in E_{i}} c_{s}^{(i)} \delta_{s}=\left(\sum_{s \in E_{i}} c_{s}^{(i)} \lambda(s)\right) \delta_{e}=0
$$

which clearly implies that $c_{s}^{(i)}=0$ for all $s \in \Gamma$ (and all $i \in I$). Therefore $m_{\varphi_{i}}(a)=0$ for all $i \in I$ and hence by $(4 \star), a=0$, i.e., we have proved that $\operatorname{Ker}(\tilde{\lambda})=0$ and hence $\tilde{\lambda}: C^{*}(\Gamma) \rightarrow C_{\lambda}^{*}(\Gamma)$ is a ${ }^{*}$-isomorphism.
$(6) \Rightarrow(7)$: The trivial representation τ_{0} gives a character on $C^{*}(\Gamma)$, by universality of $C^{*}(\Gamma)$. If (6) holds, then $C_{\lambda}^{*}(\Gamma)=C^{*}(\Gamma)$ also has a character.
$\mathbf{(7)} \Rightarrow \mathbf{(1) : ~ L e t ~} \tau: C_{\lambda}^{*}(\Gamma) \rightarrow \mathbb{C}$ be a ${ }^{*}$-homomorphism. Then τ is a state on $C_{\lambda}^{*}(\Gamma)$. Use Hahn-Banach to extend it to a state $\tilde{\tau}$ on $B\left(\ell^{2}(\Gamma)\right)$. Note that $\tilde{\tau}$ may not be a ${ }^{*}$-homomorphism anymore, but $C_{\lambda}^{*}(\Gamma)$ is contained in the multiplicative domain of $\tilde{\tau}$ in the sense of Definition 1.14 (1.5.8 [BO]):

$$
A_{\tilde{\tau}}=\left\{a \in B\left(\ell^{2}(\Gamma)\right) \mid \tilde{\tau}\left(a^{*} a\right)=\tilde{\tau}(a)^{*} \tilde{\tau}(a), \tilde{\tau}\left(a a^{*}\right)=\tilde{\tau}(a) \tilde{\tau}(a)^{*}\right\}
$$

Hence, by Proposition 1.13,

$$
\tilde{\tau}\left(\lambda_{s} a \lambda_{t}\right)=\tilde{\tau}\left(\lambda_{s}\right) \tilde{\tau}(a) \tilde{\tau}\left(\lambda_{t}\right), \quad s, t \in \Gamma, a \in B\left(\ell^{2}(\Gamma)\right)
$$

Consider now $\ell^{\infty}(\Gamma) \subset B\left(\ell^{2}(\Gamma)\right)$ acting as multiplication operators. Then for $s \in \Gamma, f \in \ell^{\infty}(\Gamma)$,

$$
\tilde{\tau}(s . f) \stackrel{?}{=} \tilde{\tau}\left(\lambda_{s} f \lambda_{s}^{-1}\right)=\tilde{\tau}\left(\lambda_{s}\right) \tilde{\tau}(f) \tilde{\tau}\left(\lambda_{s}^{-1}\right)=\tilde{\tau}(f)
$$

since $\tilde{\tau}\left(\lambda_{s}\right)^{-1}=\tilde{\tau}\left(\lambda_{s}^{-1}\right)$. Thus we have shown that $\tilde{\tau}$ is an invariant mean on $\ell^{\infty}(\Gamma)$. Therefore we need to check the formula

$$
s . f=\lambda_{s} f \lambda_{s}^{-1}, \quad s \in \Gamma, f \in \ell^{\infty}(\Gamma) .
$$

It is enough to check on $\left\{\delta_{t}: t \in \Gamma\right\}$. Since (s.f) $\delta_{t}=(s . f)(t) \delta_{t}=f\left(s^{-1} t\right) \delta_{t}$ and

$$
\lambda_{s} f \lambda_{s}^{-1} \delta_{t}=\lambda_{s} f \lambda_{s^{-1}} \delta_{t}=\lambda_{s} f \delta_{s^{-1} t}=\lambda_{s} f\left(s^{-1} t\right) \delta_{s^{-1} t}=f\left(s^{-1} t\right) \delta_{t}
$$

the formula holds.
We have now proved that $(1),(2), \ldots,(7)$ are equivalent. To add (8), (9) and (10) we prove $(4) \Leftrightarrow(8)$, $(3) \Rightarrow(9) \Rightarrow(1)$ and $(10) \Leftrightarrow(1)$.
$(4) \Rightarrow(8)$: This is "easy". Choose a net of unit vectors $\xi_{i} \in \ell^{2}(\Gamma)$ such that

$$
\lim _{i}\left\|\lambda_{s} \xi_{i}-\xi_{i}\right\|_{2}=0, \quad s \in \Gamma
$$

Then for every finite set $E \subset \Gamma$,

$$
\left\|\sum_{s \in E} \lambda_{s}\right\| \leq|E|
$$

and $\left\langle\sum_{s \in E} \lambda_{s} \xi_{i}, \xi_{i}\right\rangle \rightarrow \sum_{s \in E} 1=|E|$. Thus $\left\|\sum_{s \in E} \lambda_{s}\right\|=|E|$.
$\mathbf{(8)} \Rightarrow \mathbf{(4)}$: Let $E \subset \Gamma$ be a finite set. Let $F=E \cup E^{-1} \cup\{e\}$, and let $S=\sum_{g \in F} \lambda_{g}$. Then S is self-adjoint and $\|S\|=|F|$. Let $\varepsilon>0(\varepsilon<2)$ be given. There exists a unit vector $\xi \in \ell^{2}(\Gamma)$ such that

$$
|\langle S \xi, \xi\rangle| \geq|F|-\varepsilon .
$$

As $\langle S \xi, \xi\rangle \in \mathbb{R}$, we either have $\langle S \xi, \xi\rangle \leq-|F|+\varepsilon$, or $\langle S \xi, \xi\rangle \geq|F|-\varepsilon$. But

$$
\langle S \xi, \xi\rangle=\|\xi\|^{2}+\sum_{g \in F \backslash\{e\}}\left\langle\lambda_{g} \xi, \xi\right\rangle \geq 1-(|F|-1)=2-|F|>-|F|+\varepsilon
$$

hence $\langle S \xi, \xi\rangle \geq|F|-\varepsilon$. Now, for each $g \in E$ we have

$$
\begin{aligned}
\langle S \xi, \xi\rangle & =\left\langle\lambda_{g} \xi, \xi\right\rangle+\sum_{h \in F \backslash\{g\}}\left\langle\lambda_{h} \xi, \xi\right\rangle \\
& =\operatorname{Re}\left\langle\lambda_{g} \xi, \xi\right\rangle+\sum_{h \in F \backslash\{g\}} \operatorname{Re}\left\langle\lambda_{h} \xi, \xi\right\rangle \\
& \leq \operatorname{Re}\left\langle\lambda_{g} \xi, \xi\right\rangle+(|F|-1)
\end{aligned}
$$

We deduce that

$$
\operatorname{Re}\left\langle\lambda_{g} \xi, \xi\right\rangle \geq\langle S \xi, \xi\rangle-(|F|-1) \geq 1-\varepsilon
$$

Hence

$$
\left\|\lambda_{g} \xi-\xi\right\|^{2}=\left\|\lambda_{g} \xi\right\|^{2}+\|\xi\|^{2}-2 \operatorname{Re}\left\langle\lambda_{g} \xi, \xi\right\rangle=2-2 \operatorname{Re}\left\langle\lambda_{g} \xi, \xi\right\rangle \leq 2-2(1-\varepsilon)=2 \varepsilon
$$

Equivalently, $\left\|\lambda_{g} \xi-\xi\right\| \leq \sqrt{2 \varepsilon}$, for all $g \in E$. By standard arguments, we can now find a net $\left(\xi_{i}\right)_{i \in I}$ of unit vectors in $\ell^{2}(\Gamma)$ such that $\left\|\lambda_{s} \xi_{i}-\xi_{i}\right\| \rightarrow 0$ for all $s \in \Gamma$.
$\mathbf{(3)} \Rightarrow \mathbf{(9)}$: Let $\left(F_{i}\right)_{i \in I}$ be a Følner net (Følner sequences only exist if Γ is countable). Let $\left(e_{p, q}\right)_{p, q \in \Gamma}$ be the matrix units of $B\left(\ell^{2}(\Gamma)\right)$, i.e.,

$$
e_{p, q} \delta_{t}=\left\{\begin{array}{cc}
\delta_{p} & q=t \\
0 & q \neq t
\end{array}\right.
$$

Let p_{i} denote the projection of $\ell^{2}(\Gamma)$ onto $\operatorname{Span}\left\{\delta_{g} \mid g \in F_{i}\right\}$. Recall that $\left|F_{i}\right|<\infty$. Then

$$
p_{i} B\left(\ell^{2}(\Gamma)\right) p_{i} \cong M_{\left|F_{i}\right|}(\mathbb{C})
$$

(in the book $M_{\left|F_{i}\right|}(\mathbb{C})$ is denoted by $M_{F_{i}}(\mathbb{C})$) with matrix units $\left(e_{p, q}\right)_{p, q \in F_{i}}$. Define $\varphi_{i}: C_{\lambda}^{*}(\Gamma) \rightarrow M_{F_{i}}(\mathbb{C})$ by $x \mapsto p_{i} x p_{i}$ and $\psi_{i}: M_{F_{i}}(\mathbb{C}) \rightarrow C_{\lambda}^{*}(\Gamma)$ by

$$
e_{p, q} \mapsto \frac{1}{\left|F_{i}\right|} \lambda_{p} \lambda_{q}^{-1}, \quad p, q \in F_{i}
$$

By Example $3.2(1.5 .13[\mathrm{BO}]), \psi_{i}$ is completely positive. Clearly φ_{i} is unital, and ψ_{i} is also unital, since

$$
\psi_{i}(1)=\sum_{p \in F_{i}} \psi_{i}\left(e_{p, p}\right)=\sum_{p \in F_{i}} \frac{1}{\left|F_{i}\right|} \lambda_{p} \lambda_{p}^{-1}=1
$$

To see that $\left\|\psi_{i} \circ \varphi_{i}(a)-a\right\| \rightarrow 0$ for all $a \in C_{\lambda}^{*}(\Gamma)$, it is enough to check on elements of the form $a=\lambda_{s}$, $s \in \Gamma$. We have

$$
\varphi_{i}\left(\lambda_{s}\right)=p_{i} \lambda_{s} p_{i} \stackrel{(\star)}{=} \sum_{\substack{p, q \in F_{i} \\ p=s q}} e_{p, q}
$$

(where the formula (\star) can be checked by evaluating on $\delta_{t}, t \in \Gamma$). Hence

$$
\psi_{i} \circ \varphi_{i}\left(\lambda_{s}\right)=\frac{1}{\left|F_{i}\right|} \sum_{\substack{p, q \in F_{i} \\ p=s q}} \lambda_{p} \lambda_{q}^{-1}=\frac{1}{\left|F_{i}\right|} \sum_{\substack{p, q \in F_{i} \\ p=s q}} \lambda_{s}=\frac{\left|F_{i} \cap s F_{i}\right|}{\left|F_{i}\right|} \lambda_{s}
$$

But $\left|F_{i} \triangle s F_{i}\right|=\left|F_{i}\right|+\left|s F_{i}\right|-2\left|F_{i} \cap s F_{i}\right|$, and hence

$$
\frac{\left|F_{i} \cap s F_{i}\right|}{\left|F_{i}\right|}=1-\frac{1}{2} \frac{\left|F_{i} \triangle s F_{i}\right|}{\left|F_{i}\right|} \rightarrow 1
$$

which proves that $\left\|\psi_{i} \circ \varphi_{i}\left(\lambda_{s}\right)-\lambda_{s}\right\| \rightarrow 0$.
$\mathbf{(1)} \Rightarrow \mathbf{(1 0)}: \psi_{i}$ and φ_{i} above are also well-defined u.c.p. maps

$$
\varphi_{i}: L(\Gamma) \rightarrow M_{\left|F_{i}\right|}(\mathbb{C}), \quad \psi_{i}: M_{\left|F_{i}\right|}(\mathbb{C}) \rightarrow L(\Gamma)
$$

We have to check that $\psi_{i} \circ \varphi_{i}(x) \rightarrow x$ ultraweakly for all $x \in L(\Gamma)$. By Remark 4.4 (2.1.3 [BO]), it suffices to prove that for all $g, h \in \Gamma$,

$$
\left\langle\left(\psi_{i} \circ \varphi_{i}\right)(x) \delta_{g}, \delta_{h}\right\rangle \rightarrow\left\langle x \delta_{g}, \delta_{h}\right\rangle .
$$

Let $x \in L(\Gamma)$ and put $\alpha_{s}=\left\langle x \delta_{e}, \delta_{s}\right\rangle, s \in \Gamma$. Then $\alpha_{s} \in \mathbb{C}$ and for $g, h \in \Gamma$,

$$
\left\langle x \delta_{g}, \delta_{h}\right\rangle=\left\langle x \rho\left(g^{-1}\right) \delta_{e}, \delta_{h}\right\rangle=\left\langle\rho\left(g^{-1}\right) x \delta_{e}, \delta_{h}\right\rangle=\left\langle x \delta_{e}, \rho(g) \delta_{h}\right\rangle=\left\langle x \delta_{e}, \delta_{h g^{-1}}\right\rangle=\alpha_{h g^{-1}}
$$

where we have used that λ and ρ are commuting representations of Γ on $\ell^{2}(\Gamma)$, so $L(\Gamma)=\lambda(\Gamma)^{\prime \prime}$ commutes with $\rho(g)$ for all $g \in \Gamma$. Therefore

$$
\varphi_{i}(x)=\sum_{p, q \in F_{i}}\left\langle x \delta_{q}, \delta_{p}\right\rangle e_{p, q}=\sum_{p, q \in F_{i}} \alpha_{p q^{-1}} e_{p, q}
$$

and hence

$$
\left(\psi_{i} \circ \varphi_{i}\right)(x)=\frac{1}{\left|F_{i}\right|} \sum_{p, q \in F_{i}} \alpha_{p q^{-1}} \lambda_{p q^{-1}}=\frac{1}{\left|F_{i}\right|} \sum_{s}\left|F_{i} \cap s F_{i}\right| \alpha_{s} \lambda_{s}
$$

since each $s \in \Gamma$ can be written as $p q^{-1}$ in exactly $\left|F_{i} \cap s F_{i}\right|$ ways with $p, q \in F_{i}$. Also note that the latter sum is finite (it has at most $\left|F_{i}\right|^{2}$ non-zero elements). We now have

$$
\begin{aligned}
\left\langle\left(\psi_{i} \circ \varphi_{i}\right)(x) \delta_{g}, \delta_{h}\right\rangle & =\sum_{s} \frac{\left|F_{i} \cap s F_{i}\right|}{\left|F_{i}\right|} \alpha_{s}\left\langle\lambda_{s} \delta_{g}, \delta_{h}\right\rangle \\
& =\frac{\left|F_{i} \cap\left(h g^{-1}\right) F_{i}\right|}{\left|F_{i}\right|} \alpha_{h g^{-1}} \\
& =\frac{\left|F_{i} \cap\left(h g^{-1}\right) F_{i}\right|}{\left|F_{i}\right|}\left\langle x \delta_{g}, \delta_{h}\right\rangle \rightarrow\left\langle x \delta_{g}, \delta_{h}\right\rangle
\end{aligned}
$$

since $\left\langle\lambda_{s} \delta_{g}, \delta_{h}\right\rangle=1$ only if $s=h g^{-1}$ and is 0 for all other s.
$(9) \Rightarrow(1):$ Assume that $C_{\lambda}^{*}(\Gamma)$ is nuclear. Let

be a u.c.p. approximate factorization. (The existence of such factorization is ensured by Proposition 2.2.6 [BO], since $A=C_{\lambda}^{*}(\Gamma)$ is unital.) Hence

$$
\left\|\psi_{n} \circ \varphi_{n}(a)-a\right\| \rightarrow 0, \quad a \in C_{\lambda}^{*}(\Gamma)
$$

By Arveson's extension theorem, we can extend φ_{n} to a u.c.p. map $\widetilde{\varphi_{n}}$ on all of $B\left(\ell^{2}(\Gamma)\right)$. Put

$$
\Phi_{n}=\psi_{n} \circ \widetilde{\varphi_{n}}: B\left(\ell^{2}(\Gamma)\right) \rightarrow C_{\lambda}^{*}(\Gamma)
$$

As explained in the proof of Arveson's theorem (see also Theorem 1.3.7 [BO]), the net Φ_{n} has a pointultraweak limit

$$
\Phi: B\left(\ell^{2}(\Gamma)\right) \rightarrow{\overline{C_{\lambda}^{*}(\Gamma)}}^{\text {u.w. }}=L(\Gamma)
$$

which by (\star) satisfies

$$
\begin{equation*}
\Phi(a)=a, \quad a \in C_{\lambda}^{*}(\Gamma) \tag{7.1}
\end{equation*}
$$

Let $\tau(T)=\left\langle T \delta_{e}, \delta_{e}\right\rangle, T \in L(\Gamma)$, be the canonical trace on $L(\Gamma)$, and set $\eta:=\tau \circ \Phi: B\left(\ell^{2}(\Gamma)\right) \rightarrow \mathbb{C}$. Then η is a state on $B\left(\ell^{2}(\Gamma)\right)$. Moreover, for all $T \in B\left(\ell^{2}(\Gamma)\right)$ and $s \in \Gamma$,

$$
\eta\left(\lambda_{s} T \lambda_{s}^{*}\right)=\tau\left(\Phi\left(\lambda_{s} T \lambda_{s}^{*}\right)\right)=\tau\left(\lambda_{s} \Phi(T) \lambda_{s}^{*}\right)
$$

which follows since $C_{\lambda}^{*}(\Gamma)$ is contained in the multiplicative domain of Φ, together with (7.1). By the trace property of τ we now have

$$
\eta\left(\lambda_{s} T \lambda_{s}^{*}\right)=\tau\left(\lambda_{s}^{*}\left(\lambda_{s} \Phi(T)\right)\right)=\tau(\Phi(T))=\eta(T)
$$

for all $T \in B\left(\ell^{2}(\Gamma)\right)$ and all $s \in \Gamma$. Now let $f \in \ell^{\infty}(\Gamma)$ considered as a multiplication operator on $\ell^{2}(\Gamma)$. Then we have previously checked that

$$
\lambda_{s} f \lambda_{s}^{*}=s . f, \quad f \in \ell^{\infty}(\Gamma), s \in \Gamma .
$$

Hence $\eta(s . f)=\eta\left(\lambda_{s} f \lambda_{s}^{*}\right)=\eta(f)$, i.e., η restricted to $\ell^{\infty}(\Gamma)$ is a left invariant mean, which proves (1).
$\mathbf{(1 0)} \Rightarrow \mathbf{(1) : ~ T h e ~ p r o o f ~ o f ~}(9) \Rightarrow(1)$ can be repeated almost word by word. Actually we get in this case that $\Phi(a)=a$ for all $a \in L(\Gamma)$ so that Φ is a conditional expectation of $B\left(\ell^{2}(\Gamma)\right)$ onto $L(\Gamma)$.

Lecture 9, GOADyn
 October 7, 2021

Section 4.1: Crossed products

Definition 8.1 (Definition 4.1.1, [BO]). Let A be a C^{*}-algebra, Γ be a discrete group and $\alpha: \Gamma \rightarrow \operatorname{Aut}(A)$ be an action of Γ on A, i.e., α is a group homomorphism from Γ into the group of ${ }^{*}$-automorphisms of A. A C^{*}-algebra equipped with a Γ-action is called a Γ - C^{*}-algebra, and the triple (A, Γ, α) is called a C^{*}-dynamical system.

Let A be a Γ - C^{*}-algebra with the action of Γ on A denoted by α. Our goal is to construct a C^{*}-algebra $A \rtimes_{\alpha} \Gamma$ that encodes the Γ-action of Γ on A.

The model we have in mind is that we should have $A \rtimes_{\alpha} \Gamma:=C^{*}\left(A,\left\{u_{s}\right\}_{s \in \Gamma}\right)$ such that

$$
\begin{equation*}
u_{s} a u_{s}^{*}=\alpha_{s}(a), u_{s} u_{t}=u_{s t}, \quad a \in A, s, t \in \Gamma \tag{1}
\end{equation*}
$$

In the case when A is unital, we want to think of $u_{s}, s \in \Gamma$, as unitaries implementing the action. Let

$$
C_{c}(\Gamma, A):=\left\{\sum_{s \in \Gamma} a_{s} s: a_{s} \in A, \text { sum is finite }\right\}
$$

i.e., $C_{c}(\Gamma, A)$ is the space of finitely supported functions on Γ with values in A, so that if $S \in C_{c}(\Gamma, A)$, then by writing $a_{t}=S(t) \in A$ for all $t \in \Gamma$ we then write $S=\sum_{t \in \Gamma} a_{t} t$ (where the sum is finite). In the above model (if $1_{A} \in A$), then for all $s \in \Gamma$, we define

$$
u_{s}:=1_{A} s \in C_{c}(\Gamma, A)
$$

so that $u_{s}(t)=1_{A}$ if $t=s$ and $u_{s}(t)=0$ else.
We now want to make $C_{c}(\Gamma, A)$ into a ${ }^{*}$-algebra (and then complete it with respect to some appropriate norm to get $A \rtimes_{\alpha} \Gamma$). In the above model, if we want to implement relations (1), then we should have

$$
\left(1_{A} s\right)\left(1_{A} t\right)=1_{A} s t, \quad s, t \in \Gamma
$$

and $s a s^{-1}=\alpha_{s}(a)$ or $\left(1_{A} s\right) a=\alpha_{s}(a) s$ for all $s \in \Gamma$ and $a \in A$. Hence for $\sum_{s \in \Gamma} a_{s} s, \sum_{t \in \Gamma} b_{t} t \in C_{c}(\Gamma, A)$ we define

$$
\left(\sum_{s \in \Gamma} a_{s} s\right)\left(\sum_{t \in \Gamma} b_{t} t\right):=\sum_{s, t \in \Gamma}\left(a_{s} s\right)\left(b_{t} t\right)=\sum_{s, t} a_{s} \alpha_{s}\left(b_{t}\right) s t
$$

(the latter equality following from noting that $s b_{t}=\alpha_{s}\left(b_{t}\right) s$) and

$$
\left(\sum_{s \in \Gamma} a_{s} s\right)^{*}:=\sum_{s} s^{-1} a_{s}^{*}=\sum_{s} \alpha_{s^{-1}}\left(a_{s}^{*}\right) \cdot s^{-1}
$$

(noting that $s^{-1} a_{s}^{*}=\alpha_{s^{-1}}\left(a_{s}^{*}\right) s^{-1}$ by the above).
Remark 8.2. Let $1:=1_{A} e \in C_{c}(\Gamma, A)$, so that $1(t)=1_{A}$ if $t=e$ and $1(t)=0$ otherwise (where e is the unit of $\Gamma)$. Then 1 is the unit in $C_{c}(\Gamma, A)$ with respect to the above multiplication, so $C_{c}(\Gamma, A)$ is now a unital ${ }^{*}$-algebra. The map $a \in A \mapsto a e \in C_{c}(\Gamma, A)$ is an injective ${ }^{*}$-homomorphism. Further, if $u_{s}:=1_{A} s \in C_{c}(\Gamma, A), s \in \Gamma$, then we can check that

- $u_{s}^{*} u_{s}=1=u_{s} u_{s}^{*}, s \in \Gamma$,
- $u_{s} u_{t}=u_{s t}, s, t \in \Gamma$,
- $u_{s} a u_{s}^{*}=\alpha_{s}(a), s \in \Gamma, a \in A$.

Therefore $C_{c}(\Gamma, A)$ is the *-algebra generated by A and $\left\{u_{s}, s \in \Gamma\right\}$ and we have

$$
C_{c}(\Gamma, A) \ni \sum_{s \in \Gamma} a_{s} s=\sum_{s \in \Gamma} a_{s} u_{s} .
$$

Definition 8.3. We say that (u, π, H) is a covariant representation of (A, Γ, α) if $u: \Gamma \rightarrow \mathcal{U}(H)$ is a unitary representation, $\pi: A \rightarrow B(H)$ is a ${ }^{*}$-representation and they satisfy

$$
u_{s} \pi(a) u_{s}^{*}=\pi\left(\alpha_{s}(a)\right), \quad s \in \Gamma, a \in A .
$$

Remark 8.4. Let (u, π, H) be a covariant representation of (A, Γ, α). Define

$$
(u \times \pi)\left(\sum_{s \in \Gamma} a_{s} s\right):=\sum_{s \in \Gamma} \pi\left(a_{s}\right) u(s), \quad \sum_{s \in \Gamma} a_{s} s \in C_{c}(\Gamma, A) .
$$

Then $u \times \pi$ is a ${ }^{*}$-representation of $C_{c}(\Gamma, A)$. Note that for all $x=\sum_{s \in \Gamma} a_{s} s \in C_{c}(\Gamma, A)$ we have

$$
\begin{equation*}
\|(u \times \pi)(x)\|=\left\|\sum_{s \in \Gamma} \pi\left(a_{s}\right) u_{s}\right\| \leq \sum_{s \in \Gamma}\left\|\pi\left(a_{s}\right) u_{s}\right\| \leq \sum_{s \in \Gamma}\left\|a_{s}\right\|:=\|x\|_{1} . \tag{2}
\end{equation*}
$$

Conversely, we can show that any non-degenerate ${ }^{*}$-representation φ of $C_{c}(\Gamma, A)$ arises in this way. (Recall that a *-representation $\varphi: B \rightarrow B(H)$ is called non-degenerate if

$$
\begin{equation*}
\overline{\operatorname{span}(\varphi(B) H)}=H . \tag{3}
\end{equation*}
$$

If B is unital, with unit 1_{B}, then (3) holds if and only if $\varphi\left(1_{B}\right)=I_{H}$.) We justify this statement under the assumption that A is unital, with unit 1_{A}.

Thus, let $\varphi: C_{c}(\Gamma, A) \rightarrow B(H)$ be a non-degenerate *-representation, so that $\varphi\left(1_{A}\right)=I_{H}$. If we define $\pi(a):=\varphi(a)$ for $a \in A \subseteq C_{c}(\Gamma, A)$ then π is a unital ${ }^{*}$-representation of A, and if we let $u_{s}:=\varphi\left(1_{A} s\right) \in$ $\mathcal{U}(H)$ for $s \in \Gamma$, then $u: s \in \Gamma \mapsto u_{s} \in \mathcal{U}(H)$ is a unitary representation of Γ. Finally,

$$
u_{s} \pi(a) u_{s}^{*}=\varphi\left(1_{A} s\right) \varphi(a) \varphi\left(\left(1_{A} s\right)^{*}\right)=\pi\left(\alpha_{s}(a)\right),
$$

so that (u, π, H) is a covariant representation of (A, Γ, α) and $\varphi=u \times \pi$.
Definition 8.5 (Definition 4.1.2, [BO]). The full crossed product (sometimes called the universal crossed product) of a Γ - C^{*}-algebra A with Γ-action α, denoted by $A \rtimes_{\alpha} \Gamma$, is the completion of $C_{c}(\Gamma, A)$ with respect to the norm

$$
\begin{equation*}
\|x\|_{u}=\sup \|\pi(x)\|, \quad x \in C_{c}(\Gamma, A) . \tag{4}
\end{equation*}
$$

where the supremum is taken over all (cyclic) *-representations $\pi: C_{c}(\Gamma, A) \rightarrow B(H)$.
Remark 8.6. We will show that *-representations of $C_{c}(\Gamma, A)$ do exist. For this (cf. Remark 9.4) it will suffice to construct a concrete example of a covariant representation of (A, Γ, α). Note that in computing $\|\cdot\|_{u}$ by formula (4), we can restrict ourselves to considering non-degenerate ${ }^{*}$-representations. Then, by Remark 9.4, we have

$$
\|x\|_{u} \leq\|x\|_{1}<\infty, \quad x \in C_{c}(\Gamma, A) .
$$

Further, the fact that $\|\cdot\|_{u}$ defined by (4) is a seminorm on $C_{c}(\Gamma, A)$ follows immediately (as the supremum over a family of seminorms is a seminorm itself). We will show that $\|\cdot\|_{u}$ is actually a norm on $C_{c}(\Gamma, A)$.

Before proving the two assertions above, note the following:
Proposition 8.7 (Universal property, Proposition 4.1.3, [BO]). For every covariant representation (u, π, H) of a Γ - C^{*}-algebra A, there is a^{*}-homomorphism $\sigma: A \rtimes_{\alpha} \Gamma \rightarrow B(H)$ such that

$$
\sigma\left(\sum_{s \in \Gamma} a_{s} s\right)=\sum_{s \in \Gamma} \pi\left(a_{s}\right) u(s), \quad \sum_{s \in \Gamma} a_{s} s \in C_{c}(\Gamma, A) .
$$

We now construct a concrete example of a covariant representation of (A, Γ, α). Suppose that $A \subseteq B(H)$ is a faithful representation of A. Define a new representation π : $A \rightarrow B\left(H \otimes \ell^{2}(\Gamma)\right)$ by

$$
\begin{equation*}
\pi(a)\left(v \otimes \delta_{g}\right)=\left(\alpha_{g^{-1}}(a) v\right) \otimes \delta_{g}, \quad a \in A, g \in \Gamma, v \in H \tag{5}
\end{equation*}
$$

where $\left\{\delta_{g}\right\}_{g \in \Gamma}$ is the canonical orthonormal basis in $\ell^{2}(\Gamma)$. (Under the identification $\bigoplus_{g \in \Gamma} H \cong H \otimes \ell^{2}(\Gamma)$, we have taken the direct sum representation $\pi(a)=\bigoplus_{g \in \Gamma} \alpha_{g^{-1}}(a) \in B\left(\bigoplus_{g \in \Gamma} H\right)$.)

Now let $\lambda: \Gamma \rightarrow B\left(\ell^{2}(\Gamma)\right)$ be the left regular representation of Γ, i.e., $\lambda_{s} \delta_{t}=\delta_{s t}$ for all $t \in \Gamma$. We claim that $\left(1 \otimes \lambda, \pi, H \otimes \ell^{2}(\Gamma)\right)$ is a covariant representation of A on $H \otimes \ell^{2}(\Gamma)$. Indeed, this follows from the computations

$$
\begin{aligned}
\left(1 \otimes \lambda_{s}\right) \pi(a)\left(1 \otimes \lambda_{s}^{*}\right)\left(v \otimes \delta_{g}\right) & =\left(1 \otimes \lambda_{s}\right) \pi(a)\left(v \otimes \delta_{s^{-1} g}\right) \\
& =\left(1 \otimes \lambda_{s}\right)\left(\alpha_{g^{-1} s}(a) v \otimes \delta_{s^{-1} g}\right) \\
& =\alpha_{g^{-1} s}(a) v \otimes \delta_{g} \\
& =\pi\left(\alpha_{s}(a)\right)\left(v \otimes \delta_{g}\right),
\end{aligned}
$$

which show that

$$
\left(1 \otimes \lambda_{s}\right) \pi(a)\left(1 \otimes \lambda_{s}^{*}\right)=\pi\left(\alpha_{s}(a)\right), \quad s \in \Gamma, a \in A,
$$

hence proving the claim. By Remark 9.4, let $(1 \otimes \lambda) \times \pi$ be the associated *-representation of $C_{c}(\Gamma, A)$. This is called a left regular representation.

Example 8.8. Let $\Gamma=\mathbb{Z}$ and let A be a C^{*}-algebra with a \mathbb{Z}-action $\alpha: \mathbb{Z} \rightarrow \operatorname{Aut}(A)$. Suppose that $A \subseteq B(H)$ is faithfully represented. Noting that $H \otimes \ell^{2}(\mathbb{Z})=\bigoplus_{n \in \mathbb{Z}} H$, we construct $\pi: A \rightarrow B\left(H \otimes \ell^{2}(\mathbb{Z})\right.$ by (5), i.e.,

$$
\pi(a)=\left(\begin{array}{lllll}
\ddots & & & & \\
& \alpha_{1}(a) & & & \\
& & a & & \\
& & & \alpha_{-1}(a) & \\
& & & & \ddots
\end{array}\right)
$$

is an infinite diagonal matrix with $\pi(a)_{00}=a$. Then for all $n \in \mathbb{Z}$, we have $u_{n}=U^{n} \in \mathcal{U}\left(H \otimes \ell^{2}(\mathbb{Z})\right)$, where the unitary U is the shift

$$
U=\left(\begin{array}{llllll}
\ddots & \ddots & & & & \\
& 0 & 1 & & & \\
& & 0 & 1 & & \\
& & & 0 & 1 & \\
& & & & \ddots & \ddots
\end{array}\right)=1 \otimes \lambda_{1}
$$

so $U\left(1 \otimes \delta_{n}\right)=1 \otimes \delta_{n-1}$ for $n \in \mathbb{Z}$. One can check that $u_{n} \pi(a) u_{n}^{*}=\pi\left(\alpha_{n}(a)\right)$ for all $n \in \mathbb{Z}$ and $a \in A$.

Let's go back to the general case and look at the regular representation

$$
(1 \otimes \lambda) \times \pi: C_{c}(\Gamma, A) \rightarrow B\left(H \otimes \ell^{2}(\Gamma)\right)
$$

that we constructed.
Lemma 8.9. $(1 \otimes \lambda) \times \pi$ is injective.
Proof. Let $\sum_{t \in \Gamma} a_{t} t \in C_{c}(\Gamma, A)$. For any $v \in H$ and $g \in \Gamma$, we have

$$
\begin{aligned}
((1 \otimes \lambda) \times \pi)\left(\sum_{t \in \Gamma} a_{t} t\right)\left(v \otimes \delta_{g}\right) & =\sum_{t \in \Gamma} \pi\left(a_{t}\right)\left(1 \otimes \lambda_{t}\right)\left(v \otimes \delta_{g}\right) \\
& =\sum_{t \in \Gamma} \pi\left(a_{t}\right)\left(v \otimes \delta_{t g}\right) \\
& =\sum_{t \in \Gamma} \alpha_{g^{-1} t^{-1}}\left(a_{t}\right) v \otimes \delta_{t g}
\end{aligned}
$$

Now, for every $g \in \Gamma$, let $P_{g} \in B\left(\ell^{2}(\Gamma)\right)$ be the projection onto $\mathbb{C} \delta_{g}$. Then for all $h \in \Gamma$ we have

$$
\begin{equation*}
\left(1 \otimes P_{g}\right)((1 \otimes \lambda) \times \pi)\left(\sum_{t \in \Gamma} a_{t} t\right)\left(1 \otimes P_{h}\right)=\alpha_{g^{-1}}\left(a_{g h^{-1}}\right) \otimes P_{g} \lambda_{g h^{-1}} P_{h} \tag{6}
\end{equation*}
$$

Note now that if we set $e_{g, h}:=P_{g} \lambda_{g h^{-1}} P_{h}, g, h \in \Gamma$, then $\left\{e_{g, h}\right\}_{g, h \in \Gamma}$ is a family of matrix units in $B\left(\ell^{2}(\Gamma)\right)$, since $e_{g, h} e_{s, t}=\delta_{h, s} e_{g, t}, e_{g, h}^{*}=e_{h, g}$ and

$$
\sum_{g \in \Gamma} e_{g, g}=I_{\ell^{2}(\Gamma)}
$$

In particular, if $((1 \otimes \lambda) \times \pi)\left(\sum_{t \in \Gamma} a_{t} t\right)=0$, then (with $g=e$ and $h=s^{-1}$, we get

$$
0=\left(1 \otimes P_{e}\right)((1 \otimes \lambda) \times \pi)\left(\sum_{t \in \Gamma} a_{t} t\right)\left(1 \otimes P_{s^{-1}}\right)=a_{s} \otimes P_{e} \lambda_{s} P_{s^{-1}}
$$

Hence $a_{s}=0$ for all $s \in \Gamma$, so $\sum_{s \in \Gamma} a_{t} t=0$ and the claim is proved.

Corollary 8.10. The universal norm $\|\cdot\|_{u}$ defined by (4) is a norm on $C_{c}(\Gamma, A)$.
Definition 8.11 (Definition 4.1.4, [BO]). The reduced crossed product of (A, Γ, α), denoted by $A \rtimes_{\alpha, r} \Gamma$, is the norm closure of the image of a regular representation $C_{c}(\Gamma, A) \rightarrow B(H)$.

We will abuse notation and denote an element $x \in C_{c}(\Gamma, A) \subseteq A \rtimes_{\alpha, r} \Gamma$ by $x=\sum_{s \in \Gamma} a_{s} \lambda_{s}$.
Proposition 8.12 (Proposition 4.1.5, [BO]). The reduced crossed product $A \rtimes_{\alpha, r} \Gamma$ does not depend on the choice of faithful representation $A \subseteq B(H)$.

We postpone for a moment the proof of Proposition 9.12 and look instead at the following:
Proposition 8.13 (Proposition 4.1.9, [BO]). The map $E: C_{c}(\Gamma, A) \rightarrow A$ given by

$$
E\left(\sum_{s \in \Gamma} a_{s} \lambda_{s}\right)=a_{e}
$$

extends to a faithful conditional expectation from $A \rtimes_{\alpha, r} \Gamma$ onto A. In particular,

$$
\max _{s \in \Gamma}\left\|a_{s}\right\| \leq\left\|\sum_{s \in \Gamma} a_{s} \lambda_{s}\right\|_{A \rtimes_{\alpha, r} \Gamma}
$$

for all $\sum_{s \in \Gamma} a_{s} \lambda_{s} \in C_{c}(\Gamma, A)$.
Proof. By taking $g=h=e$ in (6), we get

$$
\left(1 \otimes P_{e}\right)((1 \otimes \lambda) \times \pi)\left(\sum_{t \in \Gamma} a_{t} t\right)\left(1 \otimes P_{e}\right)=a_{e} \otimes P_{e}, \quad \sum_{t \in \Gamma} a_{t} t \in C_{c}(\Gamma, A)
$$

Hence

$$
E(x) \otimes P_{e}=\left(1 \otimes P_{e}\right)((1 \otimes \lambda) \times \pi)(x)\left(1 \otimes P_{e}\right), \quad x \in C_{c}(\Gamma, A)
$$

Therefore E is a contraction on $C_{c}(\Gamma, A)$ and hence it can be extended to a contraction $E: A \rtimes_{\alpha, r} \Gamma \rightarrow A$. It is clearly a projection onto A, so by Tomiyama's theorem, E is a conditional expectation of $A \rtimes_{\alpha, r} \Gamma$ onto A.

It remains to show that E is faithful. For this, we'll give a different proof than the one in the book. By taking $g=h$ in (6), we get

$$
\left(1 \otimes P_{g}\right)((1 \otimes \lambda) \times \pi)\left(\sum_{t \in \Gamma} a_{t} t\right)\left(1 \otimes P_{g}\right)=\alpha_{g^{-1}}\left(a_{e}\right) \otimes P_{g}
$$

so we have

$$
\begin{equation*}
\left(1 \otimes P_{g}\right)((1 \otimes \lambda) \times \pi)(x)\left(1 \otimes P_{g}\right)=\alpha_{g^{-1}}(E(x)) \otimes P_{g}, \quad x \in C_{c}(\Gamma, A) \tag{7}
\end{equation*}
$$

Now we need the following result.
Lemma 8.14. Suppose that $T \in B(K)_{+}$and $T \neq 0$ (where K is a Hilbert space) and that there exist projections $E_{n} \in B(K)$ such that $\sum_{n} E_{n}=I_{K}$. Then there exists n such that $E_{n} T E_{n} \neq 0$.

Proof. Choose $x \in K$ such that $\left\langle T^{1 / 2} x, x\right\rangle \neq 0$ and set $x_{n}:=E_{n}(x)$ for all n. Then $x=\sum_{n} x_{n}$, where the sum is norm-convergent, and so

$$
0 \neq\left\langle T^{1 / 2} x, x\right\rangle=\sum_{n} \sum_{m}\left\langle T^{1 / 2} x_{n}, x_{m}\right\rangle
$$

Hence there are n, m such that $\left\langle T^{1 / 2} x_{n}, x_{m}\right\rangle \neq 0$, so we must have $T^{1 / 2} x_{n} \neq 0$. Thus

$$
\left\langle E_{n} T E_{n} x, x\right\rangle=\left\langle T x_{n}, x_{n}\right\rangle=\left\|T^{1 / 2} x_{n}\right\|^{2} \neq 0
$$

proving the claim.

We are now ready to prove faithfulness of E. We show that if $x \in A \rtimes_{\alpha, r} \Gamma, x \geq 0, x \neq 0$, then $E(x) \neq 0$. Suppose by contradiction that $E(x)=0$. Then by (7) we get

$$
\left(1 \otimes P_{g}\right)((1 \otimes \lambda) \times \pi)(x)\left(1 \otimes P_{g}\right)=\alpha_{g^{-1}}(E(x)) \otimes P_{g}=0, \quad g \in \Gamma .
$$

By Lemma 9.14, we deduce that $((1 \otimes \lambda) \times \pi)(x)=0$. But we have proved that $(1 \otimes \lambda) \times \pi$ is injective. Hence $x=0$, a contradiction! Finally, note that for all $s \in \Gamma$ we have $a_{s}=E\left(z \lambda_{s}^{*}\right)$, where $z=\sum_{t \in \Gamma} a_{t} t$. This implies the desired inequality, so the proof is complete.

Remark 8.15. The map E above extends also to a conditional expectation of $A \rtimes_{\alpha} \Gamma$ onto A, but in general this is not faithful (unless $A \rtimes_{\alpha} \Gamma=A \rtimes_{\alpha, r} \Gamma$ which happens, for example, if Γ is amenable - see Theorem 4.2.6 - or, more generally, if Γ acts amenably on A - see Theorem 4.3.4). These considerations follow from the existence of a contractive surjection $j: A \rtimes_{\alpha} \Gamma \rightarrow A \rtimes_{\alpha, r} \Gamma$ (since $C_{c}(\Gamma, A)$ is dense in both $A \rtimes_{\alpha} \Gamma$ and $A \rtimes_{\alpha, r} \Gamma$ and $\|\cdot\|_{u} \geq\|\cdot\|_{\alpha, r}$), so that $E \circ j: A \rtimes_{\alpha} \Gamma \rightarrow A$ is the desired map. If ker $j \neq 0$, then $\operatorname{ker}(E \circ j) \neq 0$ (as $\operatorname{ker} j \subseteq \operatorname{ker}(E \circ j)$), but $\operatorname{ker}(E \circ j)$ is an ideal in $A \rtimes_{\alpha} \Gamma$ and every ideal contains positive elements. In this case, $E \circ j$ is not faithful.

Proof of Proposition 9.12. We start with some calculations. For a finite set $F \subseteq \Gamma$, let $P_{F}=P \in B\left(\ell^{2}(\Gamma)\right)$ be the canonical projection onto $\operatorname{span}\left\{\delta_{g}: g \in F\right\}$. Let $\left(e_{p, q}\right)_{p, q \in F}$ be the canonical matrix units in $P B\left(\ell^{2}(\Gamma)\right) P \cong M_{F}(\mathbb{C})$ (note that the isomorphism is an isometry). Now let $A \subseteq B(H)$ be faithfully represented and let $\pi: A \rightarrow B\left(H \otimes \ell^{2}(\Gamma)\right)$ be a regular representation. Then for all $a \in A$, we have

$$
(1 \otimes P) \pi(a)=(1 \otimes P) \pi(a)(1 \otimes P)=\sum_{q \in F} \alpha_{q^{-1}}(a) \otimes e_{q, q}
$$

using that $\pi(a)$ is a diagonal matrix so that it commutes with $1 \otimes P$. Hence for all $s \in \Gamma$,

$$
\begin{aligned}
(1 \otimes P) \pi(a)\left(1 \otimes \lambda_{s}\right)(1 \otimes P) & =[(1 \otimes P) \pi(a)]\left[(1 \otimes P)\left(1 \otimes \lambda_{s}\right)(1 \otimes P)\right] \\
& =\left[\sum_{q \in F} \alpha_{q^{-1}}(a) \otimes e_{q, q}\right]\left(1 \otimes P \lambda_{s} P\right) \\
& =\left[\sum_{q \in F} \alpha_{q^{-1}}(a) \otimes e_{q, q}\right]\left[\sum_{p \in F \cap s F} 1 \otimes e_{p, s^{-1} p}\right] \\
& =\sum_{p \in F \cap s F} \alpha_{p^{-1}}(a) \otimes e_{p, s^{-1} p} \in A \otimes M_{F}(\mathbb{C}) .
\end{aligned}
$$

Hence for all $x=\sum_{s \in \Gamma} a_{s} \lambda_{s} \in C_{c}(\Gamma, A) \subseteq B\left(H \otimes \ell^{2}(\Gamma)\right)$, we have

$$
\begin{equation*}
(1 \otimes P) \pi(x)(1 \otimes P)=\sum_{s \in \Gamma} \sum_{p \in F \cap s F} \alpha_{p^{-1}}\left(a_{s}\right) \otimes e_{p, s^{-1} p} \in A \otimes M_{F}(\mathbb{C}) \tag{9}
\end{equation*}
$$

But $A \otimes M_{F}(\mathbb{C}) \cong M_{F}(A) \subseteq M_{F}(B(H))$, where the inclusion is a *-homomorphism and hence isometric. This means that the norm of a matrix in $M_{F}(A)$ only depends on the norms of its entries (which are elements of A), and not on the specific embedding of A into $B(H)$. By $(9),\|(1 \otimes P) \pi(x)(1 \otimes P)\|$ only depends on the norm on A, and since

$$
\|\pi(x)\|=\sup \left\{\left\|\left(1 \otimes P_{F}\right) \pi(x)\left(1 \otimes P_{F}\right)\right\|: F \subseteq \Gamma \text { finite }\right\}
$$

the proof is complete.

Lecture 10, GOADyn

October 12, 2021

Section 5.1: Exact groups

Definition 10.1 (Definition 5.1.1, $[\mathrm{BO}]$). A discrete group Γ is exact if $C_{\lambda}^{*}(\Gamma)$ is exact.
Theorem 10.2 (Guentner, Higson and Weinberger, 2005, Theorem 5.1.2, [BO]). Let F be a field. Then any subgroup Γ of $\mathrm{GL}(n, F)$ is exact (as a discrete group).

Proof. See reference [73], [BO].

Corollary 10.3. $\mathrm{GL}(n, \mathbb{Z}), \mathrm{SL}(n, \mathbb{Z}), n \geq 2$, are all exact groups.
Proof. They are subgroups of $\operatorname{GL}(n, \mathbb{Q})$.

Remark 10.4. Using Proposition 2.5.9, $[\mathrm{BO}]$ and the fact that exactness passes to subalgebras (cf. Exercise 2.3.2, [BO]), we deduce that subgroups of exact groups are exact.

Definition 10.5.

(1) Let $E \subset \Gamma$ be a finite subset. The tube of width E is the set

$$
\operatorname{Tube}(E)=\left\{(s, t) \in \Gamma \times \Gamma: s t^{-1} \in E\right\}
$$

(2) The uniform Roe algebra $C_{u}^{*}(\Gamma)$ (named after John Roe) is the C^{*}-subalgebra of $B\left(\ell^{2}(\Gamma)\right.$) generated by $C_{\lambda}^{*}(\Gamma)$ and $\ell^{\infty}(\Gamma)$.

Proposition 10.6 (Proposition 5.1.3, [BO]). Let $\alpha: \Gamma \rightarrow \operatorname{Aut}\left(\ell^{\infty}(\Gamma)\right)$ be the left translation action $\alpha_{s}(f)=s . f$, for all $s \in \Gamma$ and $f \in \ell^{\infty}(\Gamma)$. Then

$$
C_{u}^{*}(\Gamma) \cong \ell^{\infty}(\Gamma) \rtimes_{\alpha, r} \Gamma .
$$

Proof. By Definition 4.1.4 and Proposition 4.1.5 [BO], we can realize the reduced crossed product $\ell^{\infty}(\Gamma) \rtimes_{\alpha, r}$ Γ as the C^{*}-subalgebra of $B\left(\ell^{2}(\Gamma) \otimes \ell^{2}(\Gamma)\right.$ generated by $\left\{\pi(f), 1 \otimes \lambda_{s}: f \in \ell^{\infty}(\Gamma), s \in \Gamma\right\}$, where

$$
\pi(f)\left(v \otimes \delta_{t}\right)=\alpha_{t^{-1}}(f) v \otimes \delta_{t}=\left(t^{-1} . f\right) v \otimes \delta_{t}, \quad f \in \ell^{\infty}(\Gamma), v \in \ell^{2}(\Gamma), t \in \Gamma
$$

(As usual, we consider $g \in \ell^{\infty}(\Gamma)$ as a multiplication operator on $\ell^{2}(\Gamma)$.)
Since $(x, y) \mapsto(x, y x)$ is a bijection of $\Gamma \times \Gamma$ onto itself (Check that!), we can define a unitary operator U on $\ell^{2}(\Gamma) \otimes \ell^{2}(\Gamma)=\ell^{2}(\Gamma \otimes \Gamma)$ by

$$
U\left(\delta_{x} \otimes \delta_{y}\right)=\delta_{x} \otimes \delta_{y x}, \quad x, y \in \Gamma
$$

For $f \in \ell^{\infty}(\Gamma)$ and $s, t \in \Gamma$ we now have

$$
\begin{aligned}
U \pi(f)\left(\delta_{s} \otimes \delta_{t}\right)=U\left(\alpha_{t}^{-1}(f) \delta_{s} \otimes \delta_{t}\right)=U\left(f(t s) \delta_{s} \otimes \delta_{t}\right) & =f(t s) \delta_{s} \otimes \delta_{t s} \\
& =\delta_{s} \otimes f(t s) \delta_{t s} \\
& =\delta_{s} \otimes f \delta_{t s} \\
& =(1 \otimes f)\left(\delta_{s} \otimes \delta_{t s}\right) \\
& =(1 \otimes f) U\left(\delta_{s} \otimes \delta_{t}\right)
\end{aligned}
$$

Hence $U \pi(f)=(1 \otimes f) U$, which implies

$$
\begin{equation*}
U \pi(f) U^{*}=1 \otimes f \tag{1}
\end{equation*}
$$

Moreover, for $s, t, u \in \Gamma$,

$$
U\left(1 \otimes \lambda_{s}\right)\left(\delta_{u} \otimes \delta_{t}\right)=U\left(\delta_{u} \otimes \delta_{s t}\right)=\delta_{u} \otimes \delta_{s t u}=\left(1 \otimes \lambda_{s}\right)\left(\delta_{u} \otimes \delta_{t u}\right)=\left(1 \otimes \lambda_{s}\right) U\left(\delta_{u} \otimes \delta_{t}\right)
$$

Hence U commutes with $1 \otimes \lambda_{s}$, and therefore,

$$
\begin{equation*}
U\left(1 \otimes \lambda_{s}\right) U^{*}=1 \otimes \lambda_{s} \tag{2}
\end{equation*}
$$

By (1) and (2), the map $\varsigma: x \mapsto U x U^{*}$ is a ${ }^{*}$-isomorphism of $\ell^{\infty}(\Gamma) \rtimes_{\alpha, r} \Gamma$ onto $1 \otimes C_{u}^{*}(\Gamma)$ which, in turn, is ${ }^{*}$-isomorphic to $C_{u}^{*}(\Gamma)$.

Corollary 10.7 (to the proof of Proposition 10.6). There is a (unique) *-isomorphism ρ of $\ell^{\infty}(\Gamma) \rtimes_{\alpha, r} \Gamma$ onto $C_{u}^{*}(\Gamma)$ such that

$$
\begin{aligned}
& \rho(\pi(f))=f, \quad f \in \ell^{\infty}(\Gamma), \\
& \rho\left(1 \otimes \lambda_{s}\right)=\lambda_{s}, \quad s \in \Gamma
\end{aligned}
$$

Definition 10.8 (Definition 5.1.4, [BO]). A bounded function $k: \Gamma \times \Gamma \rightarrow \mathbb{C}$ is called a positive definite kernel if for every finite subset $F \subset \Gamma$

$$
\begin{equation*}
[k(s, t)]_{s, t \in F} \in M_{F}(\mathbb{C})_{+} \tag{3}
\end{equation*}
$$

Note that condition (3) implies that
(i) $k(s, s) \geq 0$ for all $s \in \Gamma$,
(ii) $k(t, s)=\overline{k(s, t)}$ for all $s, t \in \Gamma$ and
(iii) $|k(s, t)|^{2} \leq k(s, s) k(t, t)$ for all $s, t \in \Gamma$,
where the last condition follows from the fact that applying (3) to $F=\{s, t\}$ in the case $s \neq t$, we get

$$
\operatorname{det}\left(\begin{array}{ll}
k(s, s) & k(s, t) \\
k(t, s) & k(t, t)
\end{array}\right) \geq 0
$$

Hence, if $k: \Gamma \times \Gamma \rightarrow \mathbb{C}$ satisfies (3) and $\sup _{s \in \Gamma} k(s, s)<\infty$, then k is a bounded function on $\Gamma \times \Gamma$.
Note for example that if $T \in B\left(\ell^{2}(\Gamma)\right), T \geq 0$, then the kernel associated to T

$$
k_{T}(s, t)=\left\langle T \delta_{t}, \delta_{s}\right\rangle, \quad s, t \in \Gamma
$$

is a positive definite kernel.
Now set

$$
\begin{equation*}
\mathcal{A}_{0}(\Gamma)=\operatorname{span}\left(\bigcup_{s \in \Gamma} \ell^{\infty}(\Gamma) \lambda_{s}\right) \tag{4}
\end{equation*}
$$

Since $\lambda_{s} f \lambda_{s}^{-1}=s . f$, for all $f \in \ell^{\infty}(\Gamma), s \in \Gamma, \mathcal{A}_{0}(\Gamma)$ is a dense ${ }^{*}$-subalgebra of $C_{u}^{*}(\Gamma)$ and $\mathcal{A}_{0}(\Gamma)$ is the smallest ${ }^{*}$-algebra generated by $\ell^{\infty}(G) \cup\left\{\lambda_{s}: s \in \Gamma\right\}$.

Remark 10.9 (Remark 5.1.5, [BO]).
(a) If $T \in \mathcal{A}_{0}(\Gamma)_{+}$, then k_{T} is a positive definite kernel with support in some Tube (F), where $F \subset \Gamma$ is finite.
(b) Conversely, if k is a positive definite kernel with support in some $\operatorname{Tube}(F)$, where $F \subset \Gamma$ finite, then $k=k_{T}$ for a unique operator $T \in \mathcal{A}_{0}(\Gamma)_{+}$.

Proof. (a) Let $f \in \ell^{\infty}(\Gamma), u \in \Gamma$. Then for $s, t \in \Gamma$,

$$
k_{f \lambda_{u}}(s, t)=\left\langle f \lambda_{u} \delta_{t}, \delta_{s}\right\rangle=f(u t)\left\langle\delta_{u t}, \delta_{s}\right\rangle=\left\{\begin{array}{cl}
f(u t), & s t^{-1}=u \\
0, & s t^{-1} \neq u
\end{array}\right.
$$

By (4), every $T \in \mathcal{A}_{0}(\Gamma)$ is of the form $T=\sum_{u \in F} f_{u} \lambda_{u}$, where $F \subset \Gamma$ is finite and $f_{u} \in \ell^{\infty}(\Gamma)$, for all $u \in F$. Hence, by the above computation, the kernel

$$
k_{T}=\sum_{u \in F} k_{f_{u} \lambda_{u}}
$$

has support in $\left\{(s, t) \in \Gamma \times \Gamma: s t^{-1} \in F\right\}=\operatorname{Tube}(F)$, and if $T \in \mathcal{A}_{0}(\Gamma)_{+}$, then k_{T} is also a positive definite kernel.
(b) Let k be a (bounded) positive definite kernel on $\Gamma \times \Gamma$ with $\operatorname{supp}(k) \subset \operatorname{Tube}(F)$, for a finite set $F \subset \Gamma$. For $u \in F$, set

$$
f_{u}(x)=k\left(x, u^{-1} x\right), \quad u \in \Gamma, x \in \Gamma
$$

Then $f_{u} \in \ell^{\infty}(\Gamma)$, for all $u \in F$ and

$$
\begin{aligned}
k_{f_{u} \lambda_{u}}(s, t) & =\left\{\begin{array}{cl}
f_{u}(u t), & s t^{-1}=u \\
0, & s t^{-1} \neq u
\end{array}\right. \\
& =\left\{\begin{array}{cl}
k(s, t), & s t^{-1}=u \\
0, & s t^{-1} \neq u
\end{array}\right.
\end{aligned}
$$

Set $T=\sum_{u \in F} f_{u} \lambda_{u} \in \mathcal{A}_{0}(\Gamma)$. The above computation shows that k and k_{T} coincide on Tube (F), and since k and k_{T} vanish outside Tube (F), we have $k=k_{T}$. Moreover, since k is positive definite, T is positive, i.e., $T \in \mathcal{A}_{0}(\Gamma)_{+}$, which proves (b).

Theorem 10.10 (Theorem 5.1.6, [BO]). Let Γ be a discrete group. Then the following are equivalent:
(1) Γ is exact.
(2) For every finite set $E \subset \Gamma$ and $\varepsilon>0$, there exists a positive definite kernel k with $\operatorname{supp}(k) \subset$ Tube (F) for some finite set F, such that, moreover,

$$
|k(s, t)-1|<\varepsilon, \quad(s, t) \in \operatorname{Tube}(E)
$$

(3) For every finite set $E \subset \Gamma$ and $\varepsilon>0$, there exists a finite set $F \subset \Gamma$ and $\varsigma: \Gamma \rightarrow \ell^{2}(\Gamma)$ such that

- $\left\|\varsigma_{t}\right\|_{2}=1$ for all $t \in \Gamma$,
- $\operatorname{supp}\left(\varsigma_{t}\right) \subset F t$ for all $t \in \Gamma$ and
- $\left\|\varsigma_{s}-\varsigma_{t}\right\|_{2}<\varepsilon$ for all $(s, t) \in \operatorname{Tube}(E)$.
(4) For every finite set $E \subset \Gamma$ and $\varepsilon>0$, there exists a finite set $F \subset \Gamma$ and $\mu: \Gamma \rightarrow \operatorname{Prob}(\Gamma)$ such that
- $\operatorname{supp}\left(\mu_{t}\right) \subset F t$ for all $t \in \Gamma$ and
- $\left\|\mu_{s}-\mu_{t}\right\|_{1}<\varepsilon$ for all $(s, t) \in \operatorname{Tube}(E)$.
(5) $C_{u}^{*}(\Gamma)$ is nuclear.

Before proving the theorem, let's look at the following interesting application of it:

Example 10.11 ($=$ Proposition 5.1.8, [BO)., with a different proof] The free groups $\left(\mathbb{F}_{n}\right)_{2 \leq n \leq \infty}$ are exact.

Proof. Since $\mathbb{F}_{n}(3 \leq n \leq \infty)$ can be embedded in \mathbb{F}_{2}, by Remark 10.4 it is enough to show that \mathbb{F}_{2} is exact. Let a, b be the generators of \mathbb{F}_{2} and let $|x|$ be the length of a reduced word $x \in \mathbb{F}_{2}$. Define

$$
d_{r}(s, t)=\left|s t^{-1}\right|, \quad s, t \in \mathbb{F}_{2}
$$

Then d_{r} is a right invariant metric on \mathbb{F}_{2} :

$$
d_{r}(s u, t u)=d_{r}(s, t), \quad s, t, u \in \mathbb{F}_{2} .
$$

The (right) Cayley graph G of \mathbb{F}_{2} is the graph obtained by letting \mathbb{F}_{2} be the set of vertices and connecting $s, t \in \mathbb{F}_{2}$ with an edge if and only if $d_{r}(s, t)=1$.

Figure 1. (Right) Cayley graph G of \mathbb{F}_{2}

The Cayley graph of \mathbb{F}_{2} is a homogeneous tree of degree 4. Consider the infinite path $P(e)=\left\{e, a, a^{2}, a^{3}, \ldots\right\}$. For every $x \in G$, we can construct an infinite path $P(x)$ that eventually merges into $P(e)$ by setting

$$
P(x)=\left\{x, \gamma(x), \gamma^{2}(x), \ldots\right\}
$$

where $\gamma(e)=a$ and for $x \neq e$ with reduced word $x=s_{1} \cdots s_{n}, s_{j} \in\left\{a, a^{-1}, b, b^{-1}\right\}$ we define

$$
\gamma(x)=\left\{\begin{array}{cl}
a x & \text { if } s_{1}=s_{2}=\cdots=s_{n}=a \\
s_{2} \cdots s_{n} & \text { otherwise }
\end{array}\right.
$$

For instance,

$$
P(a b a)=\left\{a b a, b a, a, a^{2}, a^{3}, \ldots\right\}
$$

Note that $x, \gamma(x), \gamma^{2}(x), \ldots$ is a list of distinct elements from \mathbb{F}_{2} and $d_{r}\left(\gamma^{k}(x), \gamma^{k+1}(x)\right)=1$, for all $k \geq 0$. Also, $P(x) \cap P(e) \supset\left\{a^{j}, a^{j+1}, \ldots\right\}$, for some $j \geq 0$, and hence

$$
P(x) \cap P(y) \neq \emptyset, \quad x, y \in \mathbb{F}_{2} .
$$

Fix now $x, y \in \mathbb{F}_{2}$ and let $k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ be the smallest number such that $\gamma^{k}(x) \in P(y)$. Then $\gamma^{k}(x)=\gamma^{\ell}(y)$, for some $\ell \in \mathbb{N}_{0}$, and hence

$$
\gamma^{k+i}(x)=\gamma^{\ell+i}(y), \quad i \geq 0
$$

while

$$
\gamma^{p}(x) \neq \gamma^{q}(y) \quad \text { when }\left\{\begin{array}{l}
0 \leq p \leq k-1 \\
0 \leq q \leq \ell-1
\end{array}\right.
$$

Figure 2. $P(x)$ and $P(y)$
Since the Cayley graph is a tree, there is a unique shortest path from x to y, and this path has length $d_{r}(x, y)$. Hence from Figure 2, we have

$$
d_{r}(x, y)=k+\ell
$$

We will prove that \mathbb{F}_{2} satisfies condition (4) in Theorem 10.10 . Fix $n \in \mathbb{N}$. For $z \in \mathbb{F}_{2}$, define

$$
\mu_{z}^{(n)}=\frac{1}{n}\left(\delta_{z}+\delta_{\gamma(z)}+\cdots+\delta_{\gamma^{n-1}(z)}\right) \in \operatorname{Prob}\left(\mathbb{F}_{2}\right) .
$$

Since $d_{r}\left(z, \gamma^{j}(z)\right)=j$, we have $\operatorname{supp}\left(\mu_{z}^{(n)}\right) \subset F_{n} z$ where $F_{n}=\left\{s \in \mathbb{F}_{2}:|s| \leq n\right\}$. Let $E \subset \mathbb{F}_{2}$ be a finite set and let $\varepsilon>0$. Set $m=\max \{|s|: s \in E\}$. Then

$$
\operatorname{Tube}(E) \subset\left\{(s, t) \in \mathbb{F}_{2} \times \mathbb{F}_{2}: d_{r}(s, t) \leq m\right\}
$$

Let now $(x, y) \in \operatorname{Tube}(E)$ and define k, ℓ (depending on the pair $(x, y))$ as above. Then for all $n \geq m$,

$$
k+\ell=d_{r}(x, y) \leq m \leq n .
$$

Hence, using Figure 2, it is not hard to see that

$$
\left\|\mu_{x}^{(n)}-\mu_{y}^{(n)}\right\|_{1}=\frac{1}{n}(k+\ell+|k-\ell|) \leq \frac{2 m}{n} .
$$

Thus for $n>(2 m) / \varepsilon$,

$$
\left\|\mu_{x}^{(n)}-\mu_{y}^{(n)}\right\|_{1}<\varepsilon, \quad(x, y) \in \operatorname{Tube}(E)
$$

which shows that \mathbb{F}_{2} satisfies condition (4) in Theorem 10.10. Therefore \mathbb{F}_{2} is exact.

The proof of $(1) \Rightarrow(2)$ in Theorem 10.10 uses the following:
Exercise 10.12 (Exercise 3.9.5, [BO], slightly reformulated). Let $A \subset B(H)$ be an exact unital C^{*} algebra and let $\left(P_{i}\right)_{i \in I}$ be an increasing net of projections in $B(H)$, such that $P_{i} \rightarrow 1$ strongly. Let $E \subset A$ be a finite set and let $\varepsilon>0$. Then there exists $P \in\left\{P_{i}: i \in I\right\}$ and a u.c.p. map $\theta: P B(H) P \rightarrow B(H)$ such that

$$
\|\theta(P a P)-a\|<\varepsilon, \quad a \in E
$$

Solution of exercise. By the definition of exact C^{*}-algebras and Exercise 2.1.6, [BO], we know that the inclusion map $i: A \hookrightarrow B(H)$ is nuclear. Hence with $E \subset A$ finite and $\varepsilon>0$, there exists $k \in \mathbb{N}$, $\varphi: A \rightarrow M_{k}(\mathbb{C})$ and $\psi: M_{k}(\mathbb{C}) \rightarrow B(H)$ such that φ and ψ are u.c.p. maps and

$$
\|(\psi \circ \varphi)(a)-a\|<\frac{\varepsilon}{3}, \quad a \in E .
$$

(We have used Proposition 4.11 (Proposition 2.2.6., [BO]) therein.)
Use now Arveson's extension theorem (Theorem 3.8 (Theorem 1.6.1, $[\mathrm{BO}]$)) to extend φ to a u.c.p. map $\widetilde{\varphi}: B(H) \rightarrow M_{k}(\mathbb{C})$. By Corollary 1.6.3, $[\mathrm{BO}]$, there exists a net $\left(\varphi_{\lambda}\right)_{\lambda \in \Lambda}$ of ultraweakly continuous u.c.p. maps from $B(H)$ to $M_{k}(\mathbb{C})$ that converges point-norm to $\widetilde{\varphi}$. So there exists $\lambda_{0} \in \Lambda$ such that for $\lambda \geq \lambda_{0}$,

$$
\left\|\left(\psi \circ \varphi_{\lambda}\right)(a)-(\psi \circ \widetilde{\varphi})(a)\right\|<\frac{\varepsilon}{3}, \quad a \in E .
$$

Since $\widetilde{\varphi}(a)=\varphi(a)$, for $a \in E$, we deduce for all $\lambda \geq \lambda_{0}$ that

$$
\left\|\left(\psi \circ \varphi_{\lambda}\right)(a)-a\right\|<\frac{2 \varepsilon}{3}, \quad a \in E
$$

Set $\varphi^{\prime}=\varphi_{\lambda_{0}}: B(H) \rightarrow M_{k}(\mathbb{C})$. Then

$$
\left\|\left(\psi \circ \varphi^{\prime}\right)(a)-a\right\|<\frac{2 \varepsilon}{3}, \quad a \in E .
$$

Since φ^{\prime} is ultraweakly continuous and $\lim _{i} P_{i}=I_{B(H)}$ SOT, we conclude that $\varphi^{\prime}\left(P_{i} a P_{i}\right) \rightarrow \varphi^{\prime}(a)$, for all $a \in B(H)$. But the ultraweak topology coincides with the norm topology on $M_{k}(\mathbb{C})$ (Why?), hence

$$
\lim _{i}\left\|\varphi^{\prime}\left(P_{i} a P_{i}\right)-\varphi^{\prime}(a)\right\|=0, \quad a \in B(H)
$$

In particular, there exists $i \in I$ such that with $P=P_{i}$, we have

$$
\left\|\varphi^{\prime}(P a P)-\varphi^{\prime}(a)\right\|<\frac{\varepsilon}{3}, \quad a \in E .
$$

So altogether we deduce (using $\|\psi\| \leq 1$) that for all $a \in E$,

$$
\begin{aligned}
\left\|\left(\psi \circ \varphi^{\prime}\right)(P a P)-a\right\| & \leq\left\|\left(\psi \circ \varphi^{\prime}\right)(P a P)-\left(\psi \circ \varphi^{\prime}\right)(a)\right\|+\left\|\left(\psi \circ \varphi^{\prime}\right)(a)-a\right\| \\
& <\frac{\varepsilon}{3}+\frac{2 \varepsilon}{3}=\varepsilon .
\end{aligned}
$$

Set now $\theta=\left.\left(\psi \circ \varphi^{\prime}\right)\right|_{P B(H) P}$. Then the desired conclusion holds.

Proof of Theorem 10.10. (1) $\Rightarrow \mathbf{(2) : ~ A s s u m e ~ t h a t ~} \Gamma$ is exact, i.e., that $C_{\lambda}^{*}(\Gamma)$ is exact. Let $E \subset \Gamma$ be finite and $\varepsilon>0$ be given. It follows from Exercise 10.12 that there exists a finite set $F_{0} \subset \Gamma$ such that with P being the orthogonal projection of $\ell^{2}(\Gamma)$ onto $\ell^{2}\left(F_{0}\right)$ there is a u.c.p. map $\psi: P B\left(\ell^{2}(\Gamma)\right) P \rightarrow B\left(\ell^{2}(\Gamma)\right.$ such that

$$
\|\psi(P \lambda(s) P)-\lambda(s)\|<\varepsilon, \quad s \in E .
$$

Set now $\theta=\psi \circ \varphi$, where $\varphi(x)=P x P, x \in C_{\lambda}^{*}(\Gamma)$. Then

$$
\|\theta(\lambda(s))-\lambda(s)\|<\varepsilon, \quad s \in E
$$

Define a kernel $k: \Gamma \times \Gamma \rightarrow \mathbb{C}$ by

$$
k(s, t)=\left\langle\theta\left(\lambda\left(s t^{-1}\right)\right) \delta_{t}, \delta_{s}\right\rangle, \quad s, t \in \Gamma
$$

For all $s_{1}, \ldots, s_{n} \in \Gamma, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$, we have

$$
\begin{aligned}
\sum_{i, j} k\left(s_{i}, s_{j}\right) \overline{\alpha_{i}} \alpha_{j} & =\sum_{i, j}\left\langle\theta\left(\lambda\left(s_{i} s_{j}^{-1}\right)\right) \alpha_{j} \delta_{s_{j}}, \alpha_{i} \delta_{s_{i}}\right\rangle \\
& =\langle\underbrace{\theta^{(n)}\left(\left[\lambda\left(s_{i} s_{j}^{-1}\right)\right]_{i, j}\right)}_{\geq 0 \text { in } M_{n}\left(C_{\lambda}^{*}(\Gamma)\right)}\left[\begin{array}{c}
\alpha_{1} \delta_{s_{1}} \\
\vdots \\
\alpha_{n} \delta_{s_{n}}
\end{array}\right],\left[\begin{array}{c}
\alpha_{1} \delta_{s_{1}} \\
\vdots \\
\alpha_{n} \delta_{s_{n}}
\end{array}\right]\rangle \geq 0 .
\end{aligned}
$$

This shows that k is positive definite.
Note further that $\varphi(\lambda(s))=P \lambda(s) P$ is zero precisely when $0=\left\langle\lambda(s) \delta_{t}, \delta_{u}\right\rangle=\left\langle\delta_{s t}, \delta_{u}\right\rangle$, i.e., when $s t \neq u$ or $s \neq u t^{-1}$ for $t, u \in F_{0}$. Hence $\varphi(\lambda(s))=0$ if and only if $s \notin F_{0} \cdot F_{0}^{-1}$ (which is a finite set). Then $\theta(\lambda(s))=0$ when $s \notin F_{0} \cdot F_{0}^{-1}$ and hence $k(s, t)=0$ when $(s, t) \notin \operatorname{Tube}\left(F_{0} \cdot F_{0}^{-1}\right)$. Moreover if $s t^{-1} \in \operatorname{Tube}(E)$, then

$$
\left\|\theta\left(\lambda\left(s t^{-1}\right)\right)-\lambda\left(s t^{-1}\right)\right\|<\varepsilon
$$

Hence

$$
|k(s, t)-\underbrace{\left\langle\lambda\left(s t^{-1}\right) \delta_{t}, \delta_{s}\right\rangle}_{\left\langle\delta_{s}, \delta_{s}\right\rangle=1}|<\varepsilon
$$

i.e., $|k(s, t)-1|<\varepsilon$ for $(s, t) \in \operatorname{Tube}(E)$. Hence $(1) \Rightarrow(2)$ holds (with $F=F_{0} \cdot F_{0}^{-1}$).
$\mathbf{(2)} \Rightarrow \mathbf{(3) :}$ Let $E \subset \Gamma$ be finite and $\varepsilon>0$ be given. Let $0<\varepsilon^{*}<\frac{1}{2}$ (to be specified later). By (2) there exists $k: \Gamma \times \Gamma \rightarrow \mathbb{C}$ positive definite kernel and a finite set $F^{*} \subset \Gamma$ such that

$$
\begin{equation*}
|k(s, t)-1|<\varepsilon^{*}, \quad(s, t) \in \operatorname{Tube}\left(E^{*}\right) \tag{i}
\end{equation*}
$$

where $E^{*}=E \cup\{e\}$ and

$$
\begin{equation*}
k(s, t)=0, \quad(s, t) \notin \operatorname{Tube}\left(F^{*}\right) \tag{ii}
\end{equation*}
$$

By Remark 10.9, $k(s, t)=\left\langle a \delta_{t}, \delta_{s}\right\rangle, s, t \in \Gamma$, for an element $a \in \mathcal{A}_{0}(\Gamma)_{+} \subset C_{u}^{*}(\Gamma)_{+}$. Since $\mathcal{A}_{0}(\Gamma)$ is dense in $C_{u}^{*}(\Gamma)$, we can find $b_{n} \in \mathcal{A}_{0}(\Gamma)$ such that $b_{n} \rightarrow a^{1 / 2}$ in norm and thus $b_{n}^{*} b_{n} \rightarrow a$ in norm. Hence there exists $b \in \mathcal{A}_{0}(\Gamma)$ such that

$$
\begin{equation*}
\left\|b^{*} b-a\right\|<\varepsilon^{*} \tag{iii}
\end{equation*}
$$

By (i) we have $|k(t, t)-1|<\varepsilon^{*}$ for all $t \in \Gamma$. Hence by (iii),

$$
\begin{aligned}
\left|\left\|b \delta_{t}\right\|^{2}-1\right| & \leq\left|\left\|b \delta_{t}\right\|^{2}-k(t, t)\right|+|k(t, t)-1| \\
& =\left\langle\left(b^{*} b-a\right) \delta_{t}, \delta_{t}\right\rangle+|k(t, t)-1|<2 \varepsilon^{*}
\end{aligned}
$$

Thus

$$
\begin{equation*}
1-2 \varepsilon^{*}<\left\|b \delta_{t}\right\|^{2}<1+2 \varepsilon^{*} \tag{iv}
\end{equation*}
$$

Since $0<\varepsilon^{*}<\frac{1}{2}$ we have $b \delta_{t} \neq 0$ for all $t \in \Gamma$. For $t \in \Gamma$ we put

$$
\left\{\begin{array}{l}
\widehat{\varsigma_{t}}=b \delta_{t} \tag{v}\\
\varsigma_{t}=\frac{1}{\left\|b \delta_{t}\right\|} b \delta_{t}
\end{array}\right.
$$

Note that $\left\|\varsigma_{t}\right\|=1$ for $t \in \Gamma$. Moreover for $(s, t) \in \operatorname{Tube}(E)$

$$
\left|\left\langle\widehat{\varsigma_{t}}, \widehat{\varsigma_{s}}\right\rangle-1\right|=\left|\left\langle b^{*} b \delta_{t}, \delta_{s}\right\rangle-1\right|<\left|\left\langle a \delta_{t}, \delta_{t}\right\rangle-1\right|+\varepsilon^{*}=|k(t, t)-1|+\varepsilon^{*}<2 \varepsilon^{*}
$$

Hence $\operatorname{Re}\left\langle\widehat{\widehat{\varsigma}_{t}}, \widehat{\varsigma_{s}}\right\rangle>1-2 \varepsilon^{*}$, so by (iv),

$$
\operatorname{Re}\left\langle\varsigma_{t}, \varsigma_{s}\right\rangle>\frac{1-2 \varepsilon^{*}}{\left\|b \delta_{t}\right\|\left\|b \delta_{s}\right\|}>\frac{1-2 \varepsilon^{*}}{1+2 \varepsilon^{*}}
$$

Therefore for all $(s, t) \in \operatorname{Tube}(E)$,

$$
\left\|\varsigma_{s}-\varsigma_{t}\right\|^{2}=\left\|\varsigma_{s}\right\|^{2}+\left\|\varsigma_{t}\right\|^{2}-2 \operatorname{Re}\left\langle\varsigma_{t}, \varsigma_{s}\right\rangle<2-2 \cdot \frac{1-2 \varepsilon^{*}}{1+2 \varepsilon^{*}}=\frac{4 \varepsilon^{*}}{1+2 \varepsilon^{*}}<4 \varepsilon^{*}
$$

Thus, setting $\varepsilon^{*}=\min \left\{\frac{\varepsilon^{2}}{4}, \frac{1}{3}\right\}$, we have $0<\varepsilon^{*}<\frac{1}{2}$ as required and

$$
\left\|\varsigma_{s}-\varsigma_{t}\right\|^{2}<4 \varepsilon^{*}<\varepsilon^{2}, \quad(s, t) \in \operatorname{Tube}(E)
$$

Since $b \in \mathcal{A}_{0}(\Gamma)$ there exists a finite set $F \subset \Gamma$ and elements $\left(b_{s}\right)_{s \in F}$ in $\ell^{\infty}(\Gamma)$, such that $b=\sum_{s \in F} b_{s} \lambda_{s}$. Then for $t, u \in \Gamma$,

$$
\left\langle\widehat{\varsigma}_{t}, \delta_{u}\right\rangle=\left\langle b \delta_{t}, \delta_{u}\right\rangle=\sum_{s \in F} b_{s}(s t)\left\langle\delta_{s t} \delta_{u}\right\rangle=0
$$

if $u \notin F t$. Hence

$$
\operatorname{supp}\left(\varsigma_{t}\right)=\operatorname{supp}\left(\widehat{\varsigma_{t}}\right) \subset F t
$$

which shows (3).
$\mathbf{(3)} \Rightarrow \mathbf{(4)}$: Let E, ε, F and ς be as in (3) and set

$$
\mu_{t}(p)=\left|\varsigma_{t}(p)\right|^{2}, \quad t, p \in \Gamma
$$

Then $\mu_{t} \in \operatorname{Prob}(\Gamma)$, for all $t \in \Gamma$, and

$$
\operatorname{supp}\left(\mu_{t}\right)=\operatorname{supp}\left(\varsigma_{t}\right) \subset F t
$$

Moreover

$$
\left|\mu_{s}-\mu_{t}\right|=\left(\left|\varsigma_{s}\right|-\left|\varsigma_{t}\right|\right)\left(\left|\varsigma_{s}\right|+\left|\varsigma_{t}\right|\right) \leq\left|\varsigma_{s}-\varsigma_{t}\right|\left|\varsigma_{s}\right|+\left|\varsigma_{s}-\varsigma_{t}\right|\left|\varsigma_{t}\right|
$$

Hence, by Hölder's inequality,

$$
\left\|\mu_{s}-\mu_{t}\right\|_{1}<\left\|\varsigma_{s}-\varsigma_{t}\right\|_{2}\left\|\varsigma_{s}\right\|_{2}+\left\|\varsigma_{s}-\varsigma_{t}\right\|_{2}\left\|\varsigma_{t}\right\|_{2}=2\left\|\varsigma_{s}-\varsigma_{t}\right\|_{2}
$$

Thus for $(s, t) \in \operatorname{Tube}(E),\left\|\mu_{s}-\mu_{t}\right\|<2 \varepsilon$. Since $\varepsilon>0$ was arbitrary, we have proved (4).
$(4) \Rightarrow(5)$: The proof of this implication in Brown-Ozawa relies on Theorem 4.4.3, [BO]. Below is a selfcontained proof based on Section 4.1 only. (The construction of the map ψ^{\prime} below is similar to the proof of Lemma 4.3.3, $[\mathrm{BO}]$.) We will prove $(4) \Rightarrow(3) \Rightarrow(5)$:
$\mathbf{(4)} \Rightarrow \mathbf{(3)}$: Let E, ε, F and μ be as in (3). Put

$$
\varsigma_{t}(p)=\sqrt{\mu_{t}(p)}, \quad t, p \in \Gamma
$$

Then $\left\|\varsigma_{t}\right\|_{2}=1$ for all $t \in \Gamma$ and

$$
\operatorname{supp}\left(\varsigma_{t}\right)=\operatorname{supp}\left(\mu_{t}\right) \subset F t
$$

Moreover, for $s, t \in \Gamma$,

$$
\left|\varsigma_{t}-\varsigma_{s}\right|^{2}=\left|\mu_{t}^{1 / 2}-\mu_{s}^{1 / 2}\right|^{2} \leq\left|\mu_{t}^{1 / 2}-\mu_{s}^{1 / 2}\right|\left|\mu_{t}^{1 / 2}+\mu_{s}^{1 / 2}\right|=\left|\mu_{t}-\mu_{s}\right|
$$

Hence $\left\|\varsigma_{t}-\varsigma_{s}\right\|_{2}^{2} \leq\left\|\mu_{t}-\mu_{s}\right\|$. Therefore $\left\|\varsigma_{t}-\varsigma_{s}\right\|_{2} \leq \varepsilon^{1 / 2}$ for all $(s, t) \in \operatorname{Tube}(E)$. Since $\varepsilon>0$ was arbitrary, we have proved (3).
(3) $\Rightarrow \mathbf{(5)}$: Since $\ell^{\infty}(\Gamma)$ is an abelian C^{*}-algebra, it is nuclear (by Proposition 2.4.2, $[\mathrm{BO}]$), and hence $M_{n}\left(\ell^{\infty}(\Gamma)\right)$ is also nuclear, for all $n \in \mathbb{N}$ (cf. Corollary 2.4.4, [BO]). Thus if we can show that the identity operator $C_{u}^{*}(\Gamma)$ has an approximate factorization through $M_{n}\left(\ell^{\infty}(\Gamma)\right.$,

with u.c.p. maps φ_{i} and ψ_{i} such that

$$
\left\|\left(\psi_{i} \circ \varphi_{i}\right)(a)-a\right\| \rightarrow 0, \quad a \in C_{u}^{*}(\Gamma)
$$

then $C_{u}^{*}(\Gamma)$ is nuclear by Exercise 2.3.11, $[\mathrm{BO}]$.
Lemma 10.13. Let F be a finite subset of Γ. Then there is a unique u.c.p. map $\varphi: C_{u}^{*}(\Gamma) \rightarrow M_{F}\left(\ell^{\infty}(\Gamma)\right)=$ $\ell^{\infty}(\Gamma) \otimes M_{F}(\mathbb{C})$ such that for all $a \in \ell^{\infty}(\Gamma)$ and $s \in \Gamma$,

$$
\varphi\left(a \lambda_{s}\right)=\sum_{p \in F \cap s F} \alpha_{p}^{-1}(a) \otimes e_{p, s^{-1} p}
$$

where $\left(e_{p q}\right)_{p, q \in F}$ are the matrix units of $M_{F}(\mathbb{C})$.
Proof. Let $\rho: \ell^{\infty}(\Gamma) \rtimes_{\alpha, r} \Gamma \rightarrow C_{u}^{*}(\Gamma)$ be the ${ }^{*}$-isomorphism from the prof of Proposition 10.6. Then for $a \in \ell^{\infty}(\Gamma)$ and $s \in \Gamma$,

$$
\rho^{-1}\left(a \lambda_{s}\right)=\pi(a)\left(1 \otimes \lambda_{s}\right)
$$

Let $P \in B\left(\ell^{2}(\Gamma)\right)$ be the projection of $\ell^{2}(\Gamma)$ onto $\ell^{2}(F)$. Since

$$
\pi(a)=\sum_{q \in \Gamma} \alpha_{q}^{-1}(a) \otimes e_{q q}
$$

we have (as in the proof of Proposition 4.1.5, [BO]) that

$$
\begin{aligned}
(1 \otimes P) \pi(a)\left(1 \otimes \lambda_{s}\right)(1 \otimes P) & =\left(\sum_{p \in F} \alpha_{p}^{-1}(a) \otimes e_{p p}\right)\left(1 \otimes P \lambda_{s} P\right) \\
& =\left(\sum_{p \in F} \alpha_{p}^{-1}(a) \otimes e_{p p}\right)\left(\sum_{p \in F \cap s F} 1 \otimes e_{p, s^{-1} p}\right) \\
& =\sum_{p \in F} \alpha_{p}^{-1}(a) \otimes e_{p, s^{-1} p}
\end{aligned}
$$

Hence putting

$$
\varphi(z)=(1 \otimes P) \rho^{-1}(z)(1 \otimes P), \quad z \in C_{u}^{*}(\Gamma)
$$

we get a u.c.p. map satisfying

$$
\varphi\left(a \lambda_{s}\right)=\sum_{p \in F \cap s F} \alpha_{p}^{-1}(a) \otimes e_{p, s^{-1} p}
$$

for $a \in \ell^{\infty}(\Gamma)$ and $s \in \Gamma$ and the range of φ is contained in $M_{F}\left(\ell^{\infty}(\Gamma)\right)$.

Lemma 10.14. Let $F \subset \Gamma$ be a finite set and let $(T(p))_{p \in F}$ be elements in $\ell^{\infty}(\Gamma)$ such that

$$
\sum_{p \in F} T(p) T(p)^{*}=1
$$

Then the map $\psi: M_{F}\left(\ell^{\infty}(\Gamma)\right) \rightarrow C_{u}^{*}(\Gamma)$ defined by

$$
\psi\left(a \otimes e_{p q}\right)=T(p) \lambda_{p} a \lambda_{q}^{*} T(q)^{*}
$$

is a u.c.p. map satisfying

$$
\left\|(\psi \circ \varphi)\left(a \lambda_{s}\right)-a \lambda_{s}\right\| \leq\|a\|\left\|\sum_{p \in F} T(p) \alpha_{s}\left(T\left(s^{-1} p\right)^{*}\right)-1\right\|, \quad a \in \ell^{\infty}(\Gamma), s \in \Gamma
$$

Proof. We have

$$
\psi(1)=\psi\left(\sum_{p \in F} 1 \otimes e_{p p}\right)=\sum_{p \in F} T(p) T(p)^{*}=1
$$

by the assumptions and ψ is completely positive because for $\left[a_{p q}\right]_{p, q \in F}$ in $M_{F}\left(\ell^{\infty}(\Gamma)\right)$ and $F=\left\{p_{1}, \ldots, p_{k}\right\}$ we have

$$
\begin{aligned}
\psi\left(\left[a_{p q}\right]\right) & =\psi\left(\sum_{p, q \in F} a_{p q} \otimes e_{p q}\right) \\
& =\left[\begin{array}{lll}
T\left(p_{1}\right) \lambda_{p_{1}} & \cdots & T\left(p_{n}\right) \lambda_{p_{n}}
\end{array}\right]\left[a_{p_{i} p_{j}}\right]_{i, j}\left[\begin{array}{c}
\left(T\left(p_{1}\right) \lambda_{p_{1}}\right)^{*} \\
\cdots \\
\left(T\left(p_{n}\right) \lambda_{p_{n}}\right)^{*}
\end{array}\right]
\end{aligned}
$$

We next compute

$$
\begin{aligned}
(\psi \circ \varphi)\left(a \lambda_{s}\right) & =\psi\left(\sum_{p \in F \cap s F} \alpha_{p}^{-1}(a) \otimes e_{p, s^{-1} p}\right) \\
& =\sum_{p \in F \cap s F} T(p) \lambda_{p} \alpha_{p}^{-1}(a) \lambda_{p}^{-1} \lambda_{s} T\left(s^{-1} p\right)^{*} \\
& =\sum_{p \in F \cap s F} T(p) a \lambda_{s} T\left(s^{-1} p\right)^{*} \\
& =\sum_{p \in F \cap s F} T(p) a \alpha_{s}\left(T\left(s^{-1} p\right)^{*}\right) \lambda_{s} \\
& =\sum_{p \in F \cap s F} T(p) \alpha_{s}\left(T\left(s^{-1} p\right)^{*}\right) a \lambda_{s}
\end{aligned}
$$

where in the last step we have used that $\ell^{\infty}(\Gamma)$ is abelian. Hence

$$
\left\|(\psi \circ \varphi)\left(a \lambda_{s}\right)-a \lambda_{s}\right\| \leq\left\|\sum_{p \in F \cap s F} T(p) \alpha_{s} T\left(s^{-1} p\right)^{*}\right\|\left\|a \lambda_{s}\right\|
$$

which proves Lemma 10.14.

End of proof of $(\mathbf{3}) \Rightarrow(5)$: Since $C_{u}^{*}(\Gamma)$ is the norm closure of

$$
\mathcal{A}_{0}(\Gamma)=\operatorname{span}\left(\bigcup_{s \in \Gamma} \ell^{\infty}(\Gamma) \lambda_{s}\right)
$$

it is clear that we can obtain an approximate factorization of $\mathrm{id}_{C_{u}^{*}(\Gamma)}$ of the form (\boxtimes) on page 9 , provided we can prove the following claim:

Claim. Assuming (3), then for every finite set $E \subset \Gamma$ and every $\varepsilon>0$ there exists a finite set $F \subset \Gamma$ and $(T(p))_{p \in F}$ in $\ell^{\infty}(\Gamma)$ such that
(a) $\sum_{p \in F} T(p) T(p)^{*}=1$ and
(b) $\left\|\sum_{p \in F \cap s F} T(p) \alpha_{s}\left(T\left(s^{-1} p\right)^{*}\right)-1\right\| \leq \varepsilon$ for all $s \in E$.

Proof of claim. Let $E \subset \Gamma$ be a finite set and let $\varepsilon>0$. By (3), there exists $\varsigma: \Gamma \rightarrow \ell^{2}(\Gamma)$ and a finite set $F \subset \Gamma$ such that

- $\left\|s_{t}\right\|_{2}=1$ for all $t \in \Gamma$,
- $\operatorname{supp}\left(\varsigma_{t}\right) \subset F t$ for all $t \in \Gamma$ and
- $\left\|\varsigma_{s}-\varsigma_{t}\right\|_{2}<\frac{\varepsilon}{2}$ for all $(s, t) \in \operatorname{Tube}(E)$.

Define $T(p) \in \ell^{\infty}(\Gamma)$ for all $p \in \Gamma$ by

$$
T(p)(x)=\varsigma_{x}\left(p^{-1} x\right), \quad x \in \Gamma .
$$

Since $\operatorname{supp}\left(\varsigma_{x}\right) \subset F x$, we can check that $T(p)=0$ for all $p \in \Gamma \backslash F$. Therefore, for all $x \in \Gamma$,

$$
\left(\sum_{p \in F} T(p) T(p)^{*}\right)(x)=\sum_{p \in \Gamma}|T(p)|^{2}(x)=\sum_{p \in \Gamma}\left|\varsigma_{x}\left(p^{-1} x\right)\right|^{2}=\left\|\varsigma_{x}\right\|_{2}^{2}=1 .
$$

Hence (a) in the claim holds. For all $x \in \Gamma$ and $s \in E$,

$$
\begin{aligned}
\left(\sum_{p \in F \cap s F} T(p) \alpha_{s}\left(T\left(s^{-1} p\right)^{*}\right)\right)(x) & =\sum_{p \in \Gamma} T(p x) \overline{\alpha_{s}\left(T\left(s^{-1} p\right)\right)(x)} \\
& =\sum_{p \in \Gamma} T(p)(x) \overline{T\left(s^{-1} p\right)\left(s^{-1} x\right)} \\
& =\sum_{p \in \Gamma} \varsigma_{x}\left(p^{-1} x\right) \overline{\varsigma_{s}-1 x}\left(\left(s^{-1} p\right)^{-1} s^{-1} x\right) \\
& =\sum_{p \in \Gamma} \varsigma_{x}\left(p^{-1} x\right) \overline{\varsigma_{s}-1 x}\left(p^{-1} x\right) \\
& =\left\langle\varsigma_{x}, \varsigma_{s^{-1} x}\right\rangle .
\end{aligned}
$$

Hence for $x \in \Gamma$ and $s \in E$,

$$
\begin{aligned}
\left|\left(\sum_{p \in F \cap s F} T(p) \alpha_{s}\left(T\left(s^{-1} p\right)^{*}\right)-1\right)(x)\right| & =\left|\left\langle\varsigma_{x}, \varsigma_{s}{ }^{-1} x\right\rangle-1\right| \\
& =\left|\left\langle\varsigma_{x}, \varsigma_{s}{ }^{-1} x-\varsigma_{x}\right\rangle\right| \\
& =\left\|\varsigma_{x}\right\|_{2}\left\|_{\varsigma_{x}}-\varsigma_{s}{ }^{-1} x\right\|_{2} \\
& <\frac{\varepsilon}{2}
\end{aligned}
$$

because $\left(x, s^{-1} x\right) \in \operatorname{Tube}(E)$ for all $s \in E$. Hence (b) in the claim also holds.

Altogether, we have shown that $\operatorname{id}_{C_{u}^{*}(\Gamma)}$ has an approximate (point-norm) u.c.p. factorization through the nuclear C^{*}-algebras $M_{n}\left(\ell^{\infty}(\Gamma)\right)(n \in \mathbb{N})$ and hence $C_{u}^{*}(\Gamma)$ is nuclear, completing the proof of $(3) \Rightarrow(5)$.
$(5) \Rightarrow(1):$ Clearly $C_{\lambda}^{*}(\Gamma) \subset C_{u}^{*}(\Gamma)$. Hence

$$
C_{u}^{*}(\Gamma) \text { nuclear } \Rightarrow C_{u}^{*}(\Gamma) \text { exact } \Rightarrow C_{\lambda}^{*}(\Gamma) \text { exact, }
$$

since C^{*}-subalgebras of exact C^{*}-algebras are again exact.

Lecture 11, GOADyn

October 14, 2021

Section 12.1: Kazhdan's property (T)

Introduction to (relative) property (T)

Let Γ be a discrete group and let $\pi: \Gamma \rightarrow \mathcal{U}(H)$ be a unitary representation.
Definition 11.1 (Definition 12.1.1, [BO]).

- A vector $\xi \in H$ is called Γ-invariant if $\pi(s) \xi=\xi$ for all $s \in \Gamma$.
- A net $\left(\xi_{i}\right)_{i \in I}$ of unit vectors in H is called almost Γ-invariant if $\left\|\pi(s) \xi_{i}-\xi_{i}\right\| \rightarrow 0$ for all $s \in \Gamma$.
- If $E \subset \Gamma$ is a set and $k>0$, we say that a nonzero vector $\xi \in H$ is (E, k)-invariant if

$$
\sup _{s \in E}\|\pi(s) \xi-\xi\|<k\|\xi\|
$$

Definition 11.2 (Definition 12.1.2, [BO]). Let $\Lambda \subset \Gamma$ be a subgroup.

- We say that the inclusion $\Lambda \subset \Gamma$ has relative property (T) if any unitary representation (π, H) of Γ which has almost Γ-invariant vectors, has a nonzero Λ-invariant vector.
- We say that Γ has property (T) if the identity inclusion $\Gamma \subset \Gamma$ has relative property (T).
- A pair (E, k) where $E \subset \Gamma$ and $k>0$ is called a Kazhdan pair for the inclusion $\Lambda \subset \Gamma$ (or, for Γ, if $\Lambda=\Gamma$) if any unitary representation (π, H) of Γ which has a nonzero (E, k)-invariant vector, has a nonzero Λ-invariant vector.

The following two propositions are reformulations of Proposition 6.4.5, [BO].
Proposition 11.3. Let Γ be a discrete group. Then the following are equivalent:
(1) Γ has property (T).
(2) There exists a Kazhdan pair (F, k) for Γ with $F \subset \Gamma$ finite and $k>0$.

Proof. (1) $\Rightarrow \mathbf{(2)}$: We show $\neg(2) \Rightarrow \neg(1)$. Suppose that (2) does not hold. Then for all finite sets $F \subset \Gamma$ and $\varepsilon>0$ there exists a unitary representation (π, H) without a nonzero Γ-invariant vector, but such that there exists a unit vector $\xi \in H$ with $\|\pi(t) \xi-\xi\|<\varepsilon$ for all $t \in F$. Let

$$
I=\{(F, \varepsilon): F \subset \Gamma \text { is a finite set, } \varepsilon>0\}
$$

If $\left(F_{1}, \varepsilon_{1}\right),\left(F_{2}, \varepsilon_{2}\right) \in I$, we say that $\left(F_{1}, \varepsilon_{1}\right) \preceq\left(F_{2}, \varepsilon_{2}\right)$ if $F_{1} \subset F_{2}$ and $\varepsilon_{2} \leq \varepsilon_{1}$. Then (I, \preceq) is a directed set. By $\neg(2)$, then for all $i=\left(F_{i}, \varepsilon_{i}\right) \in I$, there exists a unitary representation $\left(\pi_{i}, H_{i}\right)$ without a nonzero Γ-invariant vector such that there exists a unit vector $\xi_{i} \in H_{i}$ satisfying

$$
\left\|\pi_{i}(t) \xi_{i}-\xi_{i}\right\|<\varepsilon_{i}, \quad t \in F_{i}
$$

Set $\pi:=\bigoplus_{i \in I} \pi_{i}: \Gamma \rightarrow B(H)$, where $H=\bigoplus_{i \in I} H_{i}$. Now, viewing $H_{i} \subset H$, we see that $\xi_{i} \in H$ for all $i \in I$ and that for all $t \in \Gamma,\left\|\pi(t) \xi_{i}-\xi_{i}\right\| \rightarrow 0$, i.e., $\left(\xi_{i}\right)_{i \in I}$ is a net of almost Γ-invariant unit vectors. However, we can show that π does not have nonzero Γ-invariant vectors, so Γ is not property (T), so $\neg(1)$ holds. Indeed, assume by contradiction that there exists a Γ-invariant $\xi \in H, \xi \neq 0$. Let $P_{i}: H \rightarrow H_{i}$, $i \in I$, be the orthogonal projection. Note that $\pi(t) P_{i}=P_{i} \pi(t)$ for all $t \in \Gamma$ and $i \in I$. Then

$$
\pi_{i}(t) P_{i} \xi=P_{i} \pi(t) \xi=P_{i} \xi, \quad i \in I, t \in \Gamma
$$

since ξ is Γ-invariant. This shows that for all $i \in I, P_{i} \xi$ is Γ-invariant for π_{i}. But π_{i} does not have nonzero Γ-invariant vectors, and hence $P_{i} \xi=0$ for all $i \in I$. Since $\xi=\sum_{i \in I} P_{i} \xi$, we deduce that $\xi=0$, a contradiction. This proves $\neg(1)$.
$\mathbf{(2)} \Rightarrow \mathbf{(1) :}$ Suppose that (2) holds and that $\left(\xi_{i}\right)_{i \in I}$ is a net of almost Γ-invariant vectors for a given unitary representation $\pi: \Gamma \rightarrow B(H)$, i.e., $\left\|\pi(t) \xi_{i}-\xi_{i}\right\| \rightarrow 0$ for all $t \in \Gamma$. Then for all $t \in \Gamma$ there exists $i_{t} \in I$ such that $\left\|\pi(t) \xi_{i}-\xi_{i}\right\|<k$ for all $i \succeq i_{t}$. Since I is a directed set and F is finite, there exists $i_{0}=i_{0}(F) \in I$ such that $i_{0} \succeq i_{t}$ for all $t \in F$. Let $\xi_{0}=\xi_{i_{0}}$. Then $\left\|\pi(t) \xi_{0}-\xi_{0}\right\|<k$ for all $t \in F$, i.e., ξ_{0} is (F, k)-invariant. Since (F, k) is a Kazhdan pair for Γ, it follows that π has a nonzero Γ-invariant vector, and hence (1) holds.

Proposition 11.4. Suppose that (E, k) is a Kazhdan pair for Γ, and that $\pi: \Gamma \rightarrow \mathcal{U}(H)$ is a unitary representation of Γ with the property that there exists $\xi \in H, \xi \neq 0$ such that

$$
\pi(t) \xi=\xi, \quad t \in E
$$

Then $\pi(t) \xi=\xi$ for all $t \in \Gamma$, i.e., ξ is Γ-invariant for π.
Proof. Set $H_{0}=\{$ all Γ-invariant vectors in $H\}$ and let $K=H_{0}^{\perp}$. Note that both H_{0} and K are invariant under π, i.e., $\pi(t) H_{0} \subset H_{0}$ and $\pi(t) K \subset K$ for all $t \in \Gamma$. Let $\pi_{1}:=\left.\pi\right|_{K}: \Gamma \rightarrow B(K)$. Then π_{1} has no nonzero Γ-invariant vectors. Hence for all $\eta \in K$ there exists $t \in E$ such that

$$
\left\|\pi_{1}(t) \eta-\eta\right\| \geq k\|\eta\|
$$

Now write (uniquely) $\xi=\xi_{0}+\eta$ for some $\xi_{0} \in H_{0}, \eta \in K$. Then for all $t \in E$,

$$
\xi=\pi(t) \xi=\pi(t) \xi_{0}+\pi(t) \eta=\xi_{0}+\pi(t) \eta
$$

since $\xi_{0} \in H_{0}$. Hence $\eta=\pi(t) \eta$ for all $t \in E$. By (\star), it follows that $\eta=0$. Hence $\xi=\xi_{0} \in H_{0}$, i.e., ξ is Γ-invariant for π.

Next we prove the following two facts: A group with Kazhdan's property (T) is finitely generated (see Corollary 6.4.7, $[\mathrm{BO}])$ - therefore it is countable - and it has finite abelianization.

Lemma 11.5. Let Γ be a discrete group. If there exists $k>0$ and a subset $E \subset \Gamma$ such that (E, k) is a Kazhdan pair for Γ, then E is a generating set for Γ.

Combining this with Proposition 11.3, we deduce that if Γ has property (T), then Γ is finitely generated, and hence it is countable!

Proof. Let (E, k) be a Kazhdan pair for Γ. We must show that E is a generating set for Γ, i.e., if Γ_{0} is the subgroup generated by E in Γ, then $\Gamma_{0}=\Gamma$. Consider $\Gamma / \Gamma_{0}=\left\{t \Gamma_{0}: t \in \Gamma\right\}$ and let $\pi: \Gamma \rightarrow B\left(\ell^{2}\left(\Gamma / \Gamma_{0}\right)\right)$ be defined by

$$
\pi(t) \delta_{s \Gamma_{0}}=\delta_{t s \Gamma_{0}}, \quad t, s \in \Gamma
$$

Let $\xi=\delta_{\Gamma_{0}} \in \ell^{2}\left(\Gamma / \Gamma_{0}\right)$. Note that for all $t \in E, \pi(t) \xi=\pi(t) \delta_{\Gamma_{0}}=\delta_{t \Gamma_{0}}=\delta_{\Gamma_{0}}=\xi$, since $t \in E \subset \Gamma_{0}$. By Proposition 11.4, it follows that $\pi(t) \xi=\xi$ for all $t \in \Gamma_{0}$. This implies that $t \Gamma_{0}=\Gamma_{0}$ for all $t \in \Gamma$, i.e., $\Gamma_{0}=\Gamma$, as wanted.

Lemma 11.6. Let Γ be a discrete group, and let $\Lambda \triangleleft \Gamma$ (i.e., Λ is a normal subgroup). If Γ has property (T), then so does the quotient Γ / Λ.

Connections with amenability

Remark 11.7. Finite groups have property (T).
This will be a consequence of Lemma 12.10 (cf. Lemma 12.1.5, [BO]) below (asserting that for any group Γ, the pair $(\Gamma, \sqrt{2})$ is Kazhdan) combined with Proposition 11.3.

Remark 11.8. If Γ is amenable with property (T), then Γ is finite.
This follows from the following:

Remark 11.9.

(1) If Γ is amenable, then the left regular representation λ has almost Γ-invariant vectors.
(2) If Γ is infinite, then the left regular representation λ has no nonzero Γ-invariant vectors.

Proof of Remark 11.9. (1) Has already been discussed in the proof of Theorem 7.10 (Theorem 2.6.8, [BO]). For completeness, we redo the construction. Suppose that Γ is amenable. Let $\left(F_{i}\right)_{i \in I}$ be a Følner net for Γ. Then for all $i \in I$, let

$$
\xi_{i}:=\frac{1}{\sqrt{\left|F_{i}\right|}} \sum_{t \in F_{i}} \delta_{t} \in \ell^{2}(\Gamma)
$$

We have $\left\|\xi_{i}\right\|=1$. For every $s \in \Gamma$, we have

$$
\lambda(s) \xi_{i}-\xi_{i}=\frac{1}{\sqrt{\left|F_{i}\right|}}\left(\sum_{t \in s F_{i} \cap F_{i}} \delta_{t}-\sum_{t \in F_{i} \backslash s F_{i}} \delta_{t}\right)
$$

so

$$
\left\|\lambda(s) \xi_{i}-\xi_{i}\right\|^{2}=\frac{1}{\left|F_{i}\right|}\left|s F_{i} \triangle F_{i}\right| \rightarrow 0
$$

Hence $\left(\xi_{i}\right)_{i \in I}$ is a net of almost Γ-invariant unit vectors for the left regular representation λ.
(2) Suppose by contradiction that there exists $\xi \in l^{2}(\Gamma), \xi \neq 0$ such that ξ is Γ-invariant for λ. Note that for all $t \in \Gamma,\left\langle\xi, \delta_{t}\right\rangle=\left\langle\xi, \lambda(t) \delta_{e}\right\rangle=\left\langle\lambda\left(t^{-1}\right) \xi, \delta_{e}\right\rangle=\left\langle\xi, \delta_{e}\right\rangle$, since ξ is Γ-invariant. Since

$$
\|\xi\|^{2}=\sum_{t \in \Gamma}\left|\left\langle\xi, \delta_{t}\right\rangle\right|=\sum_{t \in \Gamma}\left|\left\langle\xi, \delta_{e}\right\rangle\right|<\infty
$$

this contradicts the fact that Γ is infinite.

We now show that if Γ has property (T), then Γ has finite abelianization. Let $[\Gamma: \Gamma]$ be the subgroup of Γ generated by $\left\{s t s^{-1} t^{-1}: s, t \in \Gamma\right\}$ (the commutator subgroup of Γ). Then $[\Gamma: \Gamma] \triangleleft \Gamma$ and $\Gamma /[\Gamma: \Gamma]$ is abelian. Moreover, if $N \triangleleft G$, then Γ / N is abelian if and only if N contains $[\Gamma: \Gamma]$ (i.e., $[\Gamma: \Gamma]$ is the smallest normal subgroup of Γ with the property that the quotient is abelian). The group $\Gamma /[\Gamma: \Gamma]$ is called the abelianization of Γ. Now, $\Gamma /[\Gamma: \Gamma]$ is abelian, hence amenable. Moreover, if Γ has property (T), then by Lemma $11.6, \Gamma /[\Gamma: \Gamma]$ also has property (T). By Remark $11.8, \Gamma /[\Gamma: \Gamma]$ is finite.

The following are examples of discrete groups without property (T):
(1) \mathbb{Z}^{n} is amenable, but not finite, so it does not have property (T).
(2) $\mathbb{F}_{n}, n \geq 2$ is nonamenable, but not (T) since \mathbb{Z}^{n} is a quotient of \mathbb{F}_{n}.

Our next goal is to prove:
Lemma 11.10 (Lemma 12.1.5, [BO]). For any group Γ, the pair $(\Gamma, \sqrt{2})$ is Kazhdan.
The proof uses the following (see Appendix D):
Exercise 11.11 (Exercise D.1, $[\mathrm{BO}]$). Let V be a bounded subset of a Hilbert space H and let

$$
r_{0}:=\inf \{r>0: V \subset \bar{B}(\xi, r) \text { for some } \xi \in H\}
$$

a) Prove that there exists a unique $\zeta \in H$, called the circumcenter of V, such that $V \subset \bar{B}\left(\zeta, r_{0}\right)$.
b) Prove that $\zeta \in \overline{\operatorname{conv}}(V)$.

Proof. a) For all $n \geq 1$, there exists $x_{n} \in H$ such that $V \subset \bar{B}\left(x_{n}, r_{0}+\frac{1}{n}\right)$.
Claim: $\left(x_{n}\right)_{n \geq 1}$ is a Cauchy sequence in H.
To prove the claim, let $1 \leq n \leq m$ and $\delta>0$. Then $V \not \subset \bar{B}\left(\frac{x_{n}+x_{m}}{2}, r_{0}-\delta\right)$, so there exists $y \in V$ so that

$$
\left\|\frac{x_{n}+x_{m}}{2}-y\right\|>r_{0}-\delta
$$

On the other hand, $\left\|x_{n}-y\right\| \leq r_{0}+1 / n,\left\|x_{m}-y\right\| \leq r_{0}+1 / m$. By the parallelogram identity $\|z+w\|^{2}+$ $\|z-w\|^{2}=2\|z\|^{2}+2\|w\|^{2}$ applied for $z=\left(x_{n}-y\right) / 2, w=\left(x_{m}-y\right) / 2$, we get

$$
\begin{aligned}
\left\|\frac{x_{n}+x_{m}}{2}-y\right\|^{2}+\left\|\frac{x_{n}-x_{m}}{2}\right\|^{2} & =\left\|\frac{x_{n}-y}{2}+\frac{x_{m}-y}{2}\right\|^{2}+\left\|\frac{x_{n}-y}{2}-\frac{x_{m}-y}{2}\right\|^{2} \\
& =2\left\|\frac{x_{n}-y}{2}\right\|^{2}+2\left\|\frac{x_{m}-y}{2}\right\|^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|\frac{x_{n}-x_{m}}{2}\right\|^{2} & =\left\|\frac{x_{n}-y}{2}+\frac{x_{m}-y}{2}\right\|^{2}+\left\|\frac{x_{n}-y}{2}-\frac{x_{m}-y}{2}\right\|^{2}-\left\|\frac{x_{n}+x_{m}}{2}-y\right\|^{2} \\
& \leq \frac{1}{2}\left(r_{0}+\frac{1}{n}\right)^{2}+\frac{1}{2}\left(r_{0}+\frac{1}{m}\right)^{2}-\left(r_{0}-\delta\right)^{2} \\
& =r_{0}\left(\frac{1}{n}+\frac{1}{m}+2 \delta\right)-\delta^{2} \\
& <r_{0}\left(\frac{1}{n}+\frac{1}{m}+2 \delta\right) .
\end{aligned}
$$

Given $\varepsilon>0$, let $\delta=\varepsilon^{2} /\left(12 r_{0}\right)$ and $n_{\varepsilon}>2 / \delta$. Then for all $n, m \geq n_{\varepsilon}$, we get $\left\|x_{n}-x_{m}\right\|^{2}<\varepsilon^{2}$. The claim is proved.

Hence there exists $\zeta \in H$ such that $x_{n} \rightarrow \zeta$ as $n \rightarrow \infty$ and it will also follow that $V \subset \bar{B}\left(\zeta, r_{0}\right)$. Now, suppose that there exists $\zeta^{\prime} \in H$ such that $V \subset \bar{B}\left(\zeta^{\prime}, r_{0}\right)$. Let

$$
y_{n}=\left\{\begin{array}{cl}
\zeta & \text { if } n \text { is odd } \\
\zeta^{\prime} & \text { if } n \text { is even }
\end{array}\right.
$$

Then $V \subset \bar{B}\left(y_{n}, r_{0}+\frac{1}{n}\right)$ for all $n \geq 1$. By the above proof, $\left(y_{n}\right)_{n \geq 1}$ is Cauchy. This implies that $\zeta=\zeta^{\prime}$ and uniqueness is proved.
b) Let $K=\overline{\operatorname{conv}}(V)$. Suppose by contradiction that $\zeta \notin K$. Since K is closed and convex, there exists a unique $y_{0} \in K$ such that $\left\|\zeta-y_{0}\right\|=\operatorname{dist}(\zeta, K)$, and moreover,

$$
\operatorname{Re}\left\langle y_{0}-\zeta, y_{0}-y\right\rangle \leq 0, \quad y \in K
$$

Let $M=\left\{\zeta-y_{0}\right\}^{\perp}$. Let $y \in K$ and write (uniquely)

$$
y-y_{0}=\lambda\left(y_{0}-\zeta\right)+z
$$

for some $\lambda \in \mathbb{C}, z \in M$. In particular, $y-\zeta=(\lambda+1)\left(y_{0}-\zeta\right)+z$. Since

$$
0 \geq \operatorname{Re}\left\langle y_{0}-\zeta, y_{0}-y\right\rangle=\operatorname{Re}\left(-\lambda\left\|y_{0}-\zeta\right\|^{2}\right)
$$

we deduce that $\operatorname{Re} \lambda \geq 0$. Set

$$
R:=\sup \left\{\left\|y-y_{0}\right\| \mid y \in K\right\}<\infty
$$

(since K is bounded). We have $\left\|y-y_{0}\right\|^{2}=|\lambda|^{2}\left\|y_{0}-\zeta\right\|^{2}+\|z\|^{2}$ and

$$
\begin{aligned}
\|y-\zeta\|^{2} & =|\lambda+1|^{2}\left\|y_{0}-\zeta\right\|^{2}+\|z\|^{2} \\
& =\left(|\lambda|^{2}+1+2 \operatorname{Re} \lambda\right)\left\|y_{0}-\zeta\right\|^{2}+\|z\|^{2} \\
& \geq\left(|\lambda|^{2}+1\right)\left\|y_{0}-\zeta\right\|^{2}+\|z\|^{2} \\
& =|\lambda|^{2}\left\|y_{0}-\zeta\right\|^{2}+\|z\|^{2}+\left\|y_{0}-\zeta\right\|^{2} \\
& =\left\|y-y_{0}\right\|^{2}+\left\|y_{0}-\zeta\right\|^{2}
\end{aligned}
$$

since $\operatorname{Re} \lambda \geq 0$. So $\|y-\zeta\|^{2} \geq\left\|y-y_{0}\right\|^{2}+\left\|y_{0}-\zeta\right\|^{2}$. Hence

$$
\|y-\zeta\| \geq\left\|y-y_{0}\right\|\left(1+\frac{\left\|y_{0}-\zeta\right\|^{2}}{\left\|y-y_{0}\right\|^{2}}\right)^{1 / 2} \geq\left\|y-y_{0}\right\|\left(1+\frac{\left\|y_{0}-\zeta\right\|^{2}}{R^{2}}\right)^{1 / 2}
$$

Set

$$
\delta:=\left(1+\frac{\left\|y_{0}-\zeta\right\|^{2}}{R^{2}}\right)^{-1 / 2}<1
$$

Then for all $y \in K,\left\|y-y_{0}\right\| \leq \delta\|y-\zeta\|$. Hence, since $V \subset \bar{B}\left(\zeta, r_{0}\right)$, we deduce that $V \subset \bar{B}\left(y_{0}, \delta r_{0}\right)$, which is impossible by definition of r_{0}, since $\delta r_{0}<r_{0}$.

Proof of Lemma 11.10. Let $\pi: \Gamma \rightarrow \mathcal{U}(H)$ be a unitary representation and $\xi \in H$ be a nonzero $(\Gamma, \sqrt{2})$ invariant vector. We may assume that $\|\xi\|=1$. Note that $\pi(\Gamma) \xi$ is a bounded subset of H (since
$\|\pi(t) \xi\|=\|\xi\|=1$, for all $t \in \Gamma$, as $\pi(t)$ is unitary). Hence, by Exercise 11.11, there exists a unique $\zeta \in H$ such that $\pi(\Gamma) \xi \subset \bar{B}\left(\zeta, r_{0}\right)$, where

$$
r_{0}=\inf \{r>0: \pi(\Gamma) \xi \subset \bar{B}(\eta, r) \text { for some } \eta \in H\}
$$

and, moreover, $\zeta \in \overline{\operatorname{conv}}(\pi(\Gamma) \xi)$. We claim that ζ is Γ-invariant, i.e., $\pi(t) \zeta=\zeta$ for all $t \in \Gamma$. Indeed, we know that $\pi(\Gamma) \xi \subset \bar{B}\left(\zeta, r_{0}\right)$. This implies that for all $t \in \Gamma$,

$$
\underbrace{\pi(t) \pi(\Gamma) \xi}_{\pi(\Gamma) \xi} \subset \bar{B}\left(\pi(t) \zeta, r_{0}\right)
$$

By uniqueness of the circumcenter, $\pi(t) \zeta=\zeta$ for all $t \in \Gamma$.
It remains to show that $\zeta \neq 0$. We now have

$$
\operatorname{Re}\langle\xi, \zeta\rangle \stackrel{(1)}{\geq} \inf _{s \in \Gamma} \operatorname{Re}\langle\xi, \pi(s) \xi\rangle \stackrel{(2)}{=} 1-\frac{1}{2} \sup _{s \in \Gamma}\|\xi-\pi(s) \xi\|^{2} \stackrel{(3)}{>} 0
$$

with the following explanations:
(1) Use that $\zeta \in \overline{\operatorname{conv}}(\pi(\Gamma) \xi)$. Suppose that $\zeta \in \operatorname{conv}(\pi(\Gamma) \xi)$, i.e., $\zeta=\sum_{i=1}^{n} \alpha_{i} \pi\left(s_{i}\right) \xi$ where $\alpha_{i}>0$, $\sum_{i=1}^{n} \alpha_{i}=1, s_{i} \in \Gamma$. Then

$$
\begin{aligned}
\operatorname{Re}\langle\xi, \zeta\rangle & =\sum_{i=1}^{n} \alpha_{i} \operatorname{Re}\left\langle\xi, \pi\left(s_{i}\right) \xi\right\rangle \\
& \geq \sum_{i=1}^{n} \alpha_{i} \inf _{s \in \Gamma} \operatorname{Re}\langle\xi, \pi(s) \xi\rangle \\
& =\inf _{s \in \Gamma} \operatorname{Re}\langle\xi, \pi(s) \xi\rangle
\end{aligned}
$$

The general case follows by continuity.
(2) We have $\|z-w\|^{2}=\|z\|^{2}+\|w\|^{2}-2 \operatorname{Re}\langle z, w\rangle$ for all $z, w \in H$. In particular, if $\|z\|=1=\|w\|$, then

$$
\|z-w\|^{2}=2-2 \operatorname{Re}\langle z, w\rangle .
$$

(3) ξ is $(\Gamma, \sqrt{2})$-invariant.

We get $\operatorname{Re}\langle\xi, \zeta\rangle>0$ which implies that $\zeta \neq 0$ and the conclusion follows.

Lecture 12, GOADyn

October 26, 2021

Section 12.1: Kazhdan's property (T)

Equivalent characterizations of Kazhdan's property (T)

Let Γ be a discrete group and let $\pi: \Gamma \rightarrow B(H)$ be a unitary representation.
Definition 12.1 (See Appendix D). Let $\pi_{1}: \Gamma \rightarrow B\left(H_{1}\right)$ be another unitary representation.
(1) We say that $\pi_{1} \subset \pi\left(\pi_{1}\right.$ is contained in π) if there exists a projection $p \in \pi(\Gamma)^{\prime} \subset B(H)$ such that $\pi_{1} \sim_{u} \pi_{p}$, where $\pi_{p}: \Gamma \rightarrow B(p H)$ is defined by

$$
\pi_{p}(t):=\pi(t) p=p \pi(t) p, \quad t \in \Gamma
$$

(Recall that if $\pi_{1}: \Gamma \rightarrow B\left(H_{1}\right), \pi_{2}: \Gamma \rightarrow B\left(H_{2}\right)$ are unitary representations, then $\pi_{1} \sim_{u} \pi_{2}$ if there exists a unitary $U: H_{1} \rightarrow H_{2}$ such that $\pi_{2}(t)=U \pi_{1}(t) U^{*}$ for all $t \in \Gamma$.)
(2) We say that $\pi_{1} \prec \pi$ (π_{1} is weakly contained in π) if for all $x \in \mathbb{C} \Gamma$,

$$
\left\|\pi_{1}(x)\right\| \leq\|\pi(x)\|
$$

or equivalently, if the map $\pi(s) \mapsto \pi_{1}(s), s \in \Gamma$ extends to a ${ }^{*}$-homomorphism from $C^{*}(\pi(\Gamma))$ to $C^{*}\left(\pi_{1}(\Gamma)\right)$.

Remark 12.2. $\pi_{1} \subset \pi$ implies $\pi_{1} \prec \pi$, but the converse is not necessarily true.
Proposition 12.3. Let Γ be a discrete group, let $\pi: \Gamma \rightarrow B(H)$ be any unitary representation and let $\pi_{0}: \Gamma \rightarrow B(H)$ be the trivial representation, i.e., $\pi_{0}(t)=1$, for all $t \in \Gamma$.
a) $\pi_{0} \prec \pi$ if and only if there exists a net of almost Γ-invariant unit vectors $\left(\xi_{i}\right)_{i \in I} \subset H$, i.e., $\lim _{i}\left\|\pi(t) \xi_{i}-\xi_{i}\right\|=0$, for all $t \in \Gamma$.
b) $\pi_{0} \subset \pi$ if and only if there exists $\xi \in H,\|\xi\|=1$ such that $\pi(t) \xi=\xi$, for all $t \in \Gamma$ (i.e., ξ is Γ-invariant).

Consequently, Γ has property (T) if and only if for all unitary representations π of Γ, if $\pi_{0} \prec \pi$, then $\pi_{0} \subset \pi$.

Proof. a) " $\Leftarrow ":$ Let $x=\sum \alpha_{t} t \in \mathbb{C} \Gamma$ (a finite sum). Then $\left\|\pi_{0}(x)\right\|=\left|\sum \alpha_{t}\right|$ and

$$
\left\|\pi(x) \xi_{i}\right\| \approx\left\|\sum \alpha_{t} \xi_{i}\right\|=\left|\sum \alpha_{t}\right|\left\|\xi_{i}\right\|=\left|\sum \alpha_{t}\right|=\left\|\pi_{0}(x)\right\|
$$

Hence $\|\pi(x)\| \geq\left\|\pi_{0}(x)\right\|$, i.e., $\pi_{0} \prec \pi$.
$" \Rightarrow$ ": For the proof we will use the following:
Remark 12.4. Given $\varepsilon>0$ and $n \in \mathbb{N}$, there exists $\delta>0$ such that for all unit vectors $\xi_{1}, \ldots, \xi_{n} \in H$ satisfying $\left\|\sum_{k=1}^{n} \xi_{k}\right\| \geq n-\delta$, we have

$$
\left\|\xi_{i}-\xi_{j}\right\| \leq \varepsilon, \quad i, j \in\{1, \ldots, n\}
$$

Proof of Remark 12.4. Choose $\delta>0$ such that $\sqrt{2\left(2 n \delta-\delta^{2}\right)} \leq \varepsilon$. Then

$$
\sum_{i, j=1}^{n}\left\langle\xi_{i}, \xi_{j}\right\rangle=\left\|\sum_{k=1}^{n} \xi_{k}\right\|^{2} \geq(n-\delta)^{2}=n^{2}-2 n \delta+\delta^{2}
$$

Hence for all $i, j \in\{1, \ldots, n\}, \operatorname{Re}\left\langle\xi_{i}, \xi_{j}\right\rangle \geq 1-2 n \delta+\delta^{2}$. Next, recall that

$$
1-\operatorname{Re}\left\langle\xi_{i}, \xi_{j}\right\rangle=\frac{1}{2}\left\|\xi_{i}-\xi_{j}\right\|^{2}
$$

(using that $\left.\|z-w\|^{2}=\|z\|^{2}+\|w\|^{2}-2 \operatorname{Re}\langle z, w\rangle, z, w \in H\right)$. Hence $\left\|\xi_{i}-\xi_{j}\right\|^{2} \leq 2\left(2 n \delta-\delta^{2}\right) \leq \varepsilon^{2}$.

Now, let $F \subset \Gamma$ be finite such that $e \in F$ and let $\varepsilon>0$. Set $x=\sum_{t \in F} t$. Then $\|\pi(x)\| \geq\left\|\pi_{0}(x)\right\|=|F|$ (since $\pi_{0} \prec \pi$). By the triangle inequality, we get $\|\pi(x)\|=|F|$. Let $\delta>0$ be as in Remark 12.4, corresponding to $n=|F|$. Choose $\xi \in H,\|\xi\|=1$ with $\|\pi(x) \xi\| \geq|F|-\delta$, i.e., $\left\|\sum_{t \in F} \pi(t) \xi\right\| \geq|F|-\delta$. By Remark 12.4, we have $\|\pi(t) \xi-\pi(s) \xi\| \leq \varepsilon$ for all $s, t \in F$. In particular (since $e \in F$), it follows that

$$
\|\pi(t) \xi-\xi\| \leq \varepsilon
$$

for all $t \in F$. This implies that there exists a net $\left(\xi_{i}\right)$ of almost Γ-invariant unit vectors in H.
b) " \Rightarrow ": There exists a projection $p \in \pi(\Gamma)^{\prime} \subset B(H)$ such that $\pi_{0} \sim_{u} \pi_{p}$. This implies that $p H \subset \mathbb{C} \xi_{0}$ (a 1-dimensional subspace) for some $\xi_{0} \in H$. So $\pi(t) \xi_{0}=\xi_{0}$ for all $t \in \Gamma$.
" $\Leftarrow ":$ Suppose that there exists $\xi_{0} \in H$ such that $\pi(t) \xi_{0}=\xi_{0}$ for all $t \in \Gamma$. Let $p: H \rightarrow \mathbb{C} \xi_{0}$ be the orthogonal projection. Check that $p \in \pi(\Gamma)^{\prime} \subset B(H)$ and that $\pi_{p} \sim_{u} \pi_{0}$.

Appendix D

Cocycles of unitary representations

Definition 12.5. A 1-cocycle on Γ with coefficients in a unitary representation (π, H) of Γ is a function $b: \Gamma \rightarrow H$ such that

$$
b(s t)=b(s)+\pi(s) b(t), \quad s, t \in \Gamma
$$

(Note that $b(e)=0$, by setting $s=t=e$.)
Remark 12.6. If (π, H) is a unitary representation of Γ and $\xi \in H$, then

$$
b(s):=\xi-\pi(s) \xi, \quad s \in \Gamma
$$

defines a 1-cocycle on Γ (such a 1-cocycle is called a 1-coboundary).
Proof. For all $s, t \in \Gamma, b(s)+\pi(s) b(t)=\xi-\pi(s) \xi+\pi(s)(\xi-\pi(t) \xi)=\xi-\pi(s t) \xi=b(s t)$.

Definition 12.7. Let

$$
\operatorname{Aff} \operatorname{Iso}(H)=\left\{\psi: H \rightarrow H: \psi(\xi)=u \xi+\xi_{0}, \xi \in H, \text { for some } u \in \mathcal{U}(H), \xi_{0} \in H\right\}
$$

Note that $\psi \in \operatorname{Aff} \operatorname{Iso}(H)$ implies that ψ is an affine isometry of H. The converse, in general, is not necessarily true (e.g., if $H=\mathbb{C}$, then $\varphi(z)=\bar{z}$ is an affine isometry of H, but clearly $\varphi \notin \operatorname{Aff} \operatorname{Iso}(H)$.) However, if H is a real Hilbert space, then $\operatorname{Aff} \operatorname{Iso}(H)$ is the set of all affine isometries of H.

Proposition 12.8. If $\theta: \Gamma \rightarrow \operatorname{Aff} \operatorname{Iso}(H)$ is a group homomorphism of Γ into the group Aff $\operatorname{Iso}(H)$, then

$$
\theta(s) \xi=\pi(s) \xi+b(s), \quad s \in \Gamma, \quad \xi \in H
$$

for some unitary representation $\pi: \Gamma \rightarrow B(H)$ and some 1-cocycle b on Γ with coefficients in (π, H).
Conversely, if $\pi: \Gamma \rightarrow B(H)$ is a unitary representation of Γ and b is a 1-cocycle with coefficients in (π, H), then

$$
\theta(s) \xi=\pi(s) \xi+b(s), \quad s \in \Gamma, \quad \xi \in H
$$

defines a group homomorphism $\theta: \Gamma \rightarrow \operatorname{Aff} \operatorname{Iso}(H)$.
Proof. If $\theta: \Gamma \rightarrow \operatorname{Aff} \operatorname{Iso}(H)$ is a group homomorphism, then for all $s, t \in \Gamma, \xi \in H$,

$$
\theta(s t) \xi=\underbrace{\pi(s t)}_{\in \mathcal{U}(H)} \xi+\underbrace{b(s t)}_{\in H} .
$$

On the other hand, $\theta(s) \theta(t) \xi=\theta(s)(\pi(t) \xi+b(t))=\pi(s) \pi(t) \xi+\pi(s) b(t)+b(s)$. Since θ is a group homomorphism, we have $\theta(s t) \xi=\theta(s) \theta(t) \xi$. This argument shows that $\pi(s t)=\pi(s) \pi(t)$ and $b(s t)=\pi(s) b(t)+b(s)$ for all $s, t \in \Gamma$. The statement is proved. The converse one is similar (and more straightforward).

Remark 12.9. If $b(s)=\xi_{0}-\pi(s) \xi_{0}$ is a 1-coboundary and if $\theta(s) \xi=\pi(s) \xi+b(s)$ for all $s \in \Gamma, \xi \in H$, then

$$
\theta(s) \xi=\pi(s)\left(\xi-\xi_{0}\right)+\xi_{0}, \quad s \in \Gamma, \xi \in H
$$

In particular $\theta(s) \xi_{0}=\xi_{0}$ for all $s \in \Gamma$.
Conversely, if $\theta(s) \xi=\pi(s) \xi+b(s)$ for all $s \in \Gamma, \xi \in H$ for some 1-cocycle b and if $\theta(s) \xi_{0}=\xi_{0}$ for all $s \in \Gamma$, for some $\xi_{0} \in H$, then

$$
b(s)=\theta(s) \xi_{0}-\pi(s) \xi_{0}=\xi_{0}-\pi(s) \xi_{0}, \quad s \in \Gamma
$$

i.e., b is a 1 -coboundary.

Lemma 12.10 (Lemma D.10, [BO]). A 1-cocyle is bounded if and only if it is a 1-coboundary.
Proof. If $b(s)=\xi-\pi(s) \xi$ for all $s \in \Gamma$ (for some $\xi \in H$), then $\|b(s)\| \leq 2\|\xi\|$, for all $s \in \Gamma$, i.e., b is bounded.

Conversely, assume that b is bounded, i.e., that $b(\Gamma)$ is a bounded subset of H. Let $\zeta \in H$ be the unique circumcenter of $b(\Gamma)$, i.e., $b(\Gamma) \subset \bar{B}\left(\zeta, r_{0}\right)$, where $r_{0}=\inf \{r>0: b(\Gamma) \subset \bar{B}(\eta, r)$, for some $\eta \in H\}$ (cf. Exercise 12.11). Further, let $\theta: \Gamma \rightarrow \operatorname{Aff} \operatorname{Iso}(H)$ be given by

$$
\theta(s) \xi=\pi(s) \xi+b(s), \quad s \in \Gamma, \xi \in H
$$

Note that $\theta(s) b(t)=\pi(s) b(t)+b(s)=b(s t)$ for $s, t \in \Gamma$. This implies that $\theta(s) b(\Gamma)=b(\Gamma)$, for all $s \in \Gamma$. Since $\theta(s) \in \operatorname{Aff} \operatorname{Iso}(H)$, we deduce that

$$
\underbrace{\theta(s) b(\Gamma)}_{b(\Gamma)} \subset \bar{B}\left(\theta(s) \zeta, r_{0}\right), \quad s \in \Gamma
$$

By uniqueness of the circumcenter, we conclude that $\theta(s) \zeta=\zeta$, for all $s \in \Gamma$. By Remark 12.9 above, b is a 1-coboundary.

In what follows we will make use of Schoenberg's theorem (Theorem D.11, [BO]), which we now discuss. A kernel $k: \Gamma \times \Gamma \rightarrow \mathbb{R}$ is called conditionally negative definite if there exists a function $b: \Gamma \rightarrow H$, for some Hilbert space H, such that

$$
k(s, t)=\|b(s)-b(t)\|^{2}, \quad s, t \in \Gamma
$$

It can be shown that k is conditionally negative definite if and only if the following three conditions hold:

- $k(s, t)=k(t, s)$ for all $s, t \in \Gamma$,
- $\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} k\left(s_{i}, s_{j}\right) \leq 0$ for all $s_{1}, \ldots, s_{n} \in \Gamma$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ with $\sum \alpha_{i}=0$,
- $k(s, s)=0$ for all $s \in \Gamma$.

Theorem 12.11 (Schoenberg, Theorem D.11, [BO]). Let k be a conditionally negative definite kernel on Γ. Then the kernel

$$
\varphi_{\gamma}(s, t)=e^{-\gamma k(s, t)}, \quad s, t \in \Gamma
$$

is positive definite, for all $\gamma>0$. In particular, for any 1 -cocycle b on Γ and any $\gamma>0$, the function φ_{γ}^{b} on Γ, defined by

$$
\varphi_{\gamma}^{b}(s)=e^{-\gamma\|b(s)\|^{2}}, \quad s \in \Gamma
$$

is positive definite.
Remark 12.12. Let $b: \Gamma \rightarrow H$ be a 1-cocycle on Γ with coefficients in a unitary representation (π, H) of Γ. It follows by Schoenberg's theorem above that for all $\gamma>0$, the function $\varphi_{\gamma}^{b}: \Gamma \rightarrow \mathbb{R}$ defined by

$$
\varphi_{\gamma}^{b}(s):=\exp \left(-\gamma\|b(s)\|^{2}\right), \quad s \in \Gamma
$$

is positive definite. Consider the associated GNS triple $\left(\pi_{\gamma}^{b}, H_{\gamma}^{b}, \xi_{\gamma}^{b}\right)$ (cf. Section 2.5, Definition 2.5.7, See Lecture 6). Recall that

$$
\varphi_{\gamma}^{b}(s)=\left\langle\pi_{\gamma}^{b}(s) \xi_{\gamma}^{b}, \xi_{\gamma}^{b}\right\rangle, \quad s \in \Gamma
$$

where $\xi_{\gamma}^{b}=\hat{\delta}_{e}$ and $\pi_{\gamma}^{b}(s) \xi_{\gamma}^{b}=\hat{\delta}_{s}$ for all $s \in \Gamma$. Hence $\overline{\operatorname{span}}\left\{\pi_{\gamma}^{b}(s) \xi_{\gamma}^{b}: s \in \Gamma\right\}=H_{\gamma}^{b}$.
Lemma 12.13 (Lemma D.12, [BO]). Let b be a 1-cocycle on Γ and $\gamma>0$. Let $\left(\pi_{\gamma}^{b}, H_{\gamma}^{b}, \xi_{\gamma}^{b}\right)$ be the GNS triple associated to the positive definite function $\varphi_{\gamma}^{b}: \Gamma \rightarrow \mathbb{R}$ as in above Remark 12.12.

Suppose that b is unbounded on a subgroup Λ of Γ. Then there are no nonzero Λ-invariant vectors for $\left(\pi_{\gamma}^{b}, H_{\gamma}^{b}\right)$.

Proof. Let $\left(s_{n}\right)_{n \geq 1} \subset \Lambda$ be a sequence such that $\left\|b\left(s_{n}\right)\right\| \rightarrow \infty$ as $n \rightarrow \infty$. We will show that for all $\zeta \in H_{\gamma}^{b}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle\pi_{\gamma}^{b}\left(s_{n}\right) \zeta, \zeta\right\rangle=0 \tag{1}
\end{equation*}
$$

(This gives the conclusion.) By continuity, it suffices to prove that (1) holds on a dense subset of H_{γ}^{b}. Since $\operatorname{span}\left\{\pi_{\gamma}^{b}(s) \xi_{\gamma}^{b}: s \in \Gamma\right\}$ is dense in H_{γ}^{b}, it suffices to show that (1) holds for any vector of the form $\zeta=\sum_{i=1}^{N} \alpha_{i} \pi_{\gamma}^{b}\left(t_{i}\right) \xi_{\gamma}^{b}$, where $t_{i} \in \Gamma, \alpha_{i} \in \mathbb{C}$ and $N \in \mathbb{N}$. Indeed, by ($\star \star$),

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|\left\langle\pi_{\gamma}^{b}\left(s_{n}\right) \zeta, \zeta\right\rangle\right|=\limsup _{n \rightarrow \infty}\left|\sum_{i, j=1}^{N} \overline{\alpha_{i}} \alpha_{j} \varphi_{\gamma}^{b}\left(t_{i}^{-1} s_{n} t_{j}\right)\right| . \tag{2}
\end{equation*}
$$

Now, for all $i, j \in\{1, \ldots, N\}$, by ($*$) we have

$$
\begin{equation*}
\varphi_{\gamma}^{b}\left(t_{i}^{-1} s_{n} t_{j}\right)=\exp \left(-\gamma\left\|b\left(t_{i}^{-1} s_{n} t_{j}\right)\right\|^{2}\right), \quad n \in \mathbb{N} \tag{3}
\end{equation*}
$$

Note that

$$
b\left(t_{i}^{-1} s_{n} t_{j}\right)=b\left(t_{i}^{-1}\right)+\pi\left(t_{i}^{-1}\right) b\left(s_{n} t_{j}\right)=b\left(t_{i}^{-1}\right)+\pi\left(t_{i}^{-1}\right) b\left(s_{n}\right)+\pi\left(t_{i}^{-1} s_{n}\right) b\left(t_{j}\right)
$$

By the triangle inequality,

$$
\begin{aligned}
\left\|b\left(t_{i}^{-1} s_{n} t_{j}\right)\right\| & \geq\left\|\pi\left(t_{i}^{-1}\right) b\left(s_{n}\right)\right\|-\left(\left\|b\left(t_{i}^{-1}\right)\right\|+\left\|\pi\left(t_{i}^{-1} s_{n}\right) b\left(t_{j}\right)\right\|\right) \\
& \left.=\left\|b\left(s_{n}\right)\right\|-\left(\left\|b\left(t_{i}^{-1}\right)\right\|+\left\|b\left(t_{j}\right)\right\|\right)\right) \rightarrow \infty, \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Using this in (3), we obtain

$$
\limsup _{n \rightarrow \infty} \varphi_{\gamma}^{b}\left(t_{i}^{-1} s_{n} t_{j}\right)=\limsup _{n \rightarrow \infty} \exp \left(-\gamma\left\|b\left(t_{i}^{-1} s_{n} t_{j}\right)\right\|^{2}\right)=0 .
$$

Hence the limsup on the left hand side of (2) is equal to zero, and the proof is complete.

The following theorem gives a few equivalent characterizations of relative property (T).
Theorem 12.14 (Theorem 12.1.7, $[\mathrm{BO}])$. Let Γ be a discrete countable group and $\Lambda \subset \Gamma$ a subgroup. The following are equivalent:
(1) The inclusion $\Lambda \subset \Gamma$ has relative property (T).
(2) There exists a finite subset $E \subset \Gamma$ and $k>0$ with the following property: If (π, H) is a unitary representation of Γ and P is the orthogonal projection from H onto the subspace of all Λ-invariant vectors, then

$$
\|\xi-P \xi\| \leq \frac{1}{k} \sup _{s \in E}\|\pi(s) \xi-\xi\|, \quad \xi \in H
$$

(Note that a pair (E, k) satisfying this property will then be a Kazhdan pair for $\Lambda \subset \Gamma$. Indeed, if ξ_{0} is a nonzero (E, k)-invariant vector, then $\left\|\xi_{0}-P \xi_{0}\right\|<\left\|\xi_{0}\right\|$, which implies that $P \xi_{0} \neq 0$, i.e., $P \neq 0$, so there are nonzero Λ-invariant vectors.)
(3) Any sequence of positive definite functions on Γ that converges pointwise to the constant function 1, converges uniformly on Λ.
(4) Every 1-cocycle $b: \Gamma \rightarrow H$ is bounded on Λ.
(5) Every action of Γ on $\mathrm{Aff} \operatorname{Iso}(H)$ has a Λ-fixed point.

Moreover, if $\Lambda=\Gamma$, then the above conditions are equivalent to:
(6) The group Γ is finitely generated and for any generating subset $S \subset \Gamma$, there exists $k=k(\Gamma, S)>0$ such that (S, k) is a Kazhdan pair.

Note that we have already discussed in the previous lecture the equivalence of (1) and (2) when $\Lambda=\Gamma$.
Proof. We will show

$\mathbf{(1)} \Rightarrow \mathbf{(4)}$: For this, we prove $\neg(4) \Rightarrow \neg(1)$. Suppose that there exists a 1-cocycle $b: \Gamma \rightarrow H$ which is unbounded on Λ. For every $n \geq 1$, consider $\varphi_{\frac{1}{n}}^{b}: \Gamma \rightarrow \mathbb{R}$ defined by

$$
\varphi_{\frac{1}{n}}^{b}(s):=\exp \left(-\frac{\|b(s)\|^{2}}{n}\right), \quad s \in \Gamma
$$

which is positive definite by Schoenberg's theorem. Let $\left(\pi_{\frac{1}{n}}^{b}, H_{\frac{1}{n}}^{b}, \xi_{\frac{1}{n}}^{b}\right)$ be the associated GNS triple. Let

$$
\pi^{b}:=\bigoplus_{n=1}^{\infty} \pi_{\frac{1}{n}}^{b}: \Gamma \rightarrow B\left(H^{b}\right)
$$

where $H^{b}=\bigoplus_{n=1}^{\infty} H_{\frac{1}{n}}^{b}$.
Claim 1. There are no nonzero Λ-invariant vectors for π^{b}.
Proof. Let ζ be a Λ-invariant vector for π^{b}. For $n \geq 1$, let $P_{n}: H^{b} \rightarrow H_{\frac{1}{n}}^{b} \subset H^{b}$ be the orthogonal projection. One can see that $P_{n} \zeta$ is a Λ-invariant vector for $\pi_{\frac{1}{n}}^{b}$. Then, by Lemma 12.13, we deduce that $P_{n} \zeta=0$. Since $\zeta=\sum_{n=1}^{\infty} P_{n} \zeta$, we deduce that $\zeta=0$.

Claim 2. The sequence $\left(\xi_{\frac{1}{n}}^{b}\right)_{n \geq 1}$ is almost Γ-invariant for π^{b}.
Proof. For all $n \geq 1$ and $s \in \Gamma$,

$$
\exp \left(-\frac{\|b(s)\|^{2}}{n}\right)=\varphi_{\frac{1}{n}}^{b}(s)=\left\langle\pi_{\frac{1}{n}}^{b}(s) \xi_{\frac{1}{n}}^{b}, \xi_{\frac{1}{n}}^{b}\right\rangle=\left\langle\pi^{b}(s) \xi_{\frac{1}{n}}^{b}, \xi_{\frac{1}{n}}^{b}\right\rangle
$$

This implies $\operatorname{Re}\left\langle\pi^{b}(s) \xi_{\frac{1}{n}}^{b}, \xi_{\frac{1}{n}}^{b}\right\rangle \rightarrow 1$ as $n \rightarrow \infty$. Since

$$
\operatorname{Re}\left\langle\pi^{b}(s) \xi_{\frac{1}{n}}^{b}, \xi_{\frac{1}{n}}^{b}\right\rangle=1-\frac{1}{2}\left\|\pi^{b}(s) \xi_{\frac{1}{n}}^{b}-\xi_{\frac{1}{n}}^{b}\right\|^{2}
$$

for all $s \in \Gamma$ and $n \geq 1$, Claim 2 follows.

It is clear that Claims 1 and 2 together imply $\neg(1)$.
$\mathbf{(4)} \Rightarrow \mathbf{(5) : ~ L e t ~} \theta: \Gamma \rightarrow \operatorname{Aff} \operatorname{Iso}(H)$ be a group homomorphism. Then there exists a 1-cocycle $b: \Gamma \rightarrow H$ associated to it (by Proposition 12.8). By (4), b is bounded on Λ. Then, by the proof of Lemma 12.10, there exists $\zeta \in H$ such that $\theta(s) \zeta=\zeta$ for all $s \in \Lambda$, i.e., θ has a Λ-fixed point.
$\mathbf{(5)} \Rightarrow \mathbf{(4) : ~ L e t ~} b: \Gamma \rightarrow H$ be a 1-cocycle. Let $\theta: \Gamma \rightarrow \operatorname{Aff} \operatorname{Iso}(H)$ be the group homomorphism associated to it (cf. Proposition 12.8). By Remark 12.9, we infer that b is a 1-coboundary on Λ. By Lemma 12.10, b is bounded on Λ.
$\mathbf{(4)} \Rightarrow \mathbf{(2) : ~ W e ~ p r o v e ~} \neg(2) \Rightarrow \neg(4)$. Write $\Gamma=\bigcup_{n=1}^{\infty} E_{n}$, where $E_{1} \subset E_{2} \subset \cdots \subset \cdots$ are finite sets. By $\neg(2)$, for all $n \geq 1$ there exists a unitary representation $\left(\pi_{n}, H_{n}\right)$ of Γ and $\xi_{n} \in H_{n}$ such that

$$
\frac{1}{4^{n}}\left\|\xi_{n}-P_{n} \xi_{n}\right\|>\sup _{s \in E_{n}}\left\|\xi_{n}-\pi_{n}(s) \xi_{n}\right\|:=\delta_{n}
$$

(Take $k_{n}=4^{-n}$.) Here $P_{n}: H_{n} \rightarrow\left\{\right.$ all Λ-invariant vectors (in H_{n}) for $\left.\pi_{n}\right\}$ is the orthogonal projection. Let $\pi:=\bigoplus_{n=1}^{\infty} \pi_{n}: \Gamma \rightarrow B(H)$, where $H=\bigoplus_{n=1}^{\infty} H_{n}$. Note that for all $s \in \Gamma$,

$$
\left(\frac{\xi_{n}-\pi_{n}(s) \xi_{n}}{2^{n} \delta_{n}}\right)_{n \geq 1} \in H=\bigoplus_{n=1}^{\infty} H_{n}
$$

Indeed, if $s \in \Gamma$, then $s \in E_{k}$ for some k, and hence $s \in E_{n}$ for all $n \geq k$, so

$$
\sum_{n=1}^{\infty}\left\|\frac{\xi_{n}-\pi_{n}(s) \xi_{n}}{2^{n} \delta_{n}}\right\|^{2}=\sum_{n=1}^{k-1}\left\|\frac{\xi_{n}-\pi_{n}(s) \xi_{n}}{2^{n} \delta_{n}}\right\|^{2}+\sum_{n=k}^{\infty}\left|\frac{\delta_{n}}{2^{n} \delta_{n}}\right|^{2}<\infty
$$

Now, define a map $\sigma: \Gamma \rightarrow H$ by

$$
\sigma(s):=\left(\frac{\xi_{n}-\pi_{n}(s) \xi_{n}}{2^{n} \delta_{n}}\right)_{n \geq 1} \in H, \quad s \in \Gamma
$$

We claim that σ is a 1 -cocycle on Γ with coefficients in (π, H). Indeed, for all $n \geq 1$, let $\sigma_{n}: \Gamma \rightarrow H_{n}$ be defined by

$$
\sigma_{n}(s)=\frac{\xi_{n}-\pi_{n}(s) \xi_{n}}{2^{n} \delta_{n}}=\frac{\xi_{n}}{2^{n} \delta_{n}}-\pi_{n}(s) \frac{\xi_{n}}{2^{n} \delta_{n}}, \quad s \in \Gamma .
$$

Hence σ_{n} is a 1-coboundary and therefore a 1-cocycle. Then for all $s, t \in \Gamma$,

$$
\sigma(s t)=\bigoplus_{n=1}^{\infty} \sigma_{n}(s t)=\bigoplus_{n=1}^{\infty}\left(\sigma_{n}(s)+\pi_{n}(s) \sigma_{n}(t)\right)=\sigma(s)+\pi(s) b(t)
$$

So the claim above is proved.
Now, note that for all $n \geq 1, \pi_{n}(\Lambda) \xi_{n}$ is a bounded subset of H_{n} (since $\pi_{n}(t)$ is unitary for all $t \in \Lambda$). Hence by Exercise 12.11, there exists a unique $\zeta_{n} \in H_{n}$ such that

$$
\pi_{n}(\Lambda) \xi_{n} \subset \bar{B}\left(\zeta_{n}, r_{n}\right)
$$

where $r_{n}=\inf \left\{r>0: \pi_{n}(\Lambda) \xi_{n} \subset \bar{B}(\eta, r)\right.$ for some $\left.\eta \in H_{n}\right\}$. Moreover, $\zeta_{n} \in \overline{\operatorname{conv}}\left(\pi_{n}(\Lambda) \xi_{n}\right)$. By uniqueness of ζ_{n}, it follows that

$$
\pi_{n}(s) \zeta_{n}=\zeta_{n}, \quad s \in \Lambda
$$

Hence $\zeta_{n} \in P_{n} H_{n}$. Now, use that $\zeta_{n} \in \overline{\operatorname{conv}}\left(\pi_{n}(\Lambda) \xi_{n}\right)$ to conclude that for $\varepsilon_{n}=\frac{1}{2}\left\|\xi_{n}-P_{n} \xi_{n}\right\|$ there exists $N=N(n) \in \mathbb{N}, \alpha_{j}>0$ with $\sum_{j=1}^{N} \alpha_{j}=1, s_{j} \in \Lambda, 1 \leq j \leq N$ such that

$$
\left\|\zeta_{n}-\sum_{j=1}^{N} \alpha_{j} \pi_{n}\left(s_{j}\right) \xi_{n}\right\|<\varepsilon_{n}
$$

Then

$$
\left\|\xi_{n}-P_{n} \xi_{n}\right\| \leq\left\|\xi_{n}-\zeta_{n}\right\| \leq\left\|\xi_{n}-\sum_{j=1}^{N} \alpha_{j} \pi_{n}\left(s_{j}\right) \xi_{n}\right\|+\varepsilon_{n} \leq \sum_{j=1}^{N} \alpha_{j}\left\|\xi_{n}-\pi_{n}\left(s_{j}\right) \xi_{n}\right\|+\varepsilon_{n}
$$

Therefore there exists $j \in\{1, \ldots, N\}$ such that

$$
\left\|\xi_{n}-\pi_{n}\left(s_{j}\right) \xi_{n}\right\| \geq\left\|\xi_{n}-P_{n} \xi_{n}\right\|-\varepsilon_{n}=\frac{1}{2}\left\|\xi_{n}-P_{n} \xi_{n}\right\|
$$

Denote s_{j} by s_{n} (note that j depends on n, after all). We have therefore proved that for all $n \geq 1$, there exists $\delta_{n}>0$ and $s_{n} \in \Lambda$ such that

$$
\left\|\frac{\xi_{n}-\pi_{n}\left(s_{n}\right) \xi_{n}}{2^{n} \delta_{n}}\right\| \geq \frac{1}{2} \frac{\left\|\xi_{n}-P_{n} \xi_{n}\right\|}{2^{n} \delta_{n}}>\frac{1}{2} \frac{4^{n} \delta_{n}}{2^{n} \delta_{n}}=2^{n-1}
$$

Hence $\left\|\sigma\left(s_{n}\right)\right\| \geq 2^{n-1}$ for all $n \geq 1$. This implies that the 1-cocycle σ is unbounded on Λ, so $\neg(4)$ holds. $\mathbf{(2)} \Rightarrow \mathbf{(3)}$: Assume that (2) holds, and let (E, k) be as in condition (2). We first show that for all positive definite functions $\varphi: \Gamma \rightarrow \mathbb{C}$ with $\varphi(e)=1$ we have

$$
\sup _{t \in \Lambda}|1-\varphi(t)| \leq \frac{2}{k} \max _{s \in E}(2 \operatorname{Re}(1-\varphi(s)))^{1 / 2}
$$

Note that if φ is positive definite, then $|\varphi(t)| \leq|\varphi(e)|=1$ for all $t \in \Gamma$, so $\operatorname{Re} \varphi(t) \leq 1$ for all $t \in \Gamma$.
Let $\left(\pi_{\varphi}, H_{\varphi}, \xi_{\varphi}\right)$ be the GNS triple associated to φ. Then

$$
\varphi(t)=\left\langle\pi_{\varphi}(t) \xi_{\varphi}, \xi_{\varphi}\right\rangle, \quad t \in \Gamma
$$

and $\left\|\xi_{\varphi}\right\|=1$. Let P be the projection from H_{φ} onto the space of Λ-invariant vectors. We now have

$$
\begin{aligned}
\sup _{t \in \Lambda}|1-\varphi(t)| & =\sup _{t \in \Lambda}\left|\left\langle\xi_{\varphi}-\pi_{\varphi}(t) \xi_{\varphi}, \xi_{\varphi}\right\rangle\right| \\
& \stackrel{(a)}{\leq} \sup _{t \in \Lambda}\left\|\xi_{\varphi}-\pi_{\varphi}(t) \xi_{\varphi}\right\| \underbrace{\left\|\xi_{\varphi}\right\|}_{=1} \\
& \stackrel{(b)}{=} \sup _{t \in \Lambda}\left\|\pi_{\varphi}(t) P^{\perp} \xi_{\varphi}-P^{\perp} \xi_{\varphi}\right\| \\
& \leq 2 \sup _{t \in \Lambda}\left\|P^{\perp} \xi_{\varphi}\right\|=2\left\|P^{\perp} \xi_{\varphi}\right\| \\
& =2\left\|\xi_{\varphi}-P \xi_{\varphi}\right\| \\
& \leq \frac{2}{k} \sup _{s \in E}\left\|\pi(s) \xi_{\varphi}-\xi_{\varphi}\right\| \\
& \stackrel{(c)}{=} \frac{2}{k} \max _{s \in E}(2 \operatorname{Re}(1-\varphi(s)))^{1 / 2}
\end{aligned}
$$

with the following explanations:
a) This is just the Cauchy-Schwarz inequality.
b) Write $I=P+P^{\perp}$. Then

$$
\begin{aligned}
\xi_{\varphi}-\pi_{\varphi}(t) \xi_{\varphi} & =-\left(P+P^{\perp}\right)\left(\pi_{\varphi}(t) \xi_{\varphi}\right)+\left(P+P^{\perp}\right) \xi_{\varphi} \\
& =\pi_{\varphi}(t)\left(P+P^{\perp}\right) \xi_{\varphi}-\left(P+P^{\perp}\right) \xi_{\varphi} \\
& =\pi_{\varphi}(t) P^{\perp} \xi_{\varphi}-P^{\perp} \xi_{\varphi}
\end{aligned}
$$

since $\pi_{\varphi}(t) P \xi_{\varphi}=P \xi_{\varphi}$.
c) E is finite, and $\|z-w\|^{2}=\|z\|^{2}+\|w\|^{2}-2 \operatorname{Re}\langle z, w\rangle$ for all $z, w \in H$.

Now, let $\left(\varphi_{n}\right)_{n \geq 1}$ be a sequence of positive definite functions on Γ converging pointwise to 1 on Γ. First, note that we may assume that $\varphi_{n}(e)=1$ for all $n \geq 1$. (Otherwise, set $\psi_{n}:=\frac{\varphi_{n}}{\varphi_{n}(e)}$. Then ψ_{n} is positive definite on Γ with $\psi_{n}(e)=1$. Since $\varphi_{n}(e) \rightarrow 1$ as $n \rightarrow \infty$, $\sup _{t \in \Gamma}\left|\psi_{n}(t)-\varphi_{n}(t)\right| \rightarrow 0$, as $n \rightarrow \infty$. So if we show that $\left(\psi_{n}\right)_{n \geq 1}$ converges uniformly to 1 on Λ, it will follow that $\left(\varphi_{n}\right)_{n \geq 1}$ converges uniformly to 1 on Λ.)

Now apply to each φ_{n} the inequality (\square) proved above. For $n \geq 1$,

$$
\sup _{t \in \Lambda}\left|1-\varphi_{n}(t)\right| \leq \frac{2}{k} \max _{s \in E}\left(2 \operatorname{Re}\left(1-\varphi_{n}(s)\right)\right)^{1 / 2} \rightarrow 0
$$

as $n \rightarrow \infty$. Hence $\varphi_{n} \rightarrow 1$ uniformly on Λ.
$\mathbf{(3)} \Rightarrow \mathbf{(1)}$: Let (π, H) be a unitary representation of Γ which contains almost Γ-invariant unit vectors $\left(\xi_{n}\right)_{n \geq 1}$. For all $n \geq 1$, let $\varphi_{n}: \Gamma \rightarrow \mathbb{C}$ be defined by

$$
\varphi_{n}(s):=\left\langle\pi(s) \xi_{n}, \xi_{n}\right\rangle, \quad s \in \Gamma
$$

Then φ_{n} is positive definite with $\varphi_{n}(e)=1$. By the Cauchy-Schwarz inequality, we have for all $s \in \Gamma$ and $n \geq 1$ that

$$
\left|1-\varphi_{n}(s)\right| \leq\left\|\pi(s) \xi_{n}-\xi_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Therefore $\left(\varphi_{n}\right)_{n \geq 1}$ converges pointwise to the constant function 1. By hypothesis, φ_{n} will converge uniformly on Λ to the constant function 1 . Hence there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$
\sup _{s \in \Lambda}\left|1-\varphi_{n}(s)\right|<\frac{1}{2}
$$

Note that $\left\|\pi(s) \xi_{n}-\xi_{n}\right\|^{2}=2-2 \operatorname{Re} \varphi(s)=2 \operatorname{Re}(1-\varphi(s)) \leq 2|1-\varphi(s)|$. Hence, for all $n \geq N$ we have $\sup _{s \in \Lambda}\left\|\pi(s) \xi_{n}-\xi_{n}\right\|<1$, i.e., ξ_{n} is a $(\Lambda, 1)$-invariant vector, hence $(\Lambda, \sqrt{2})$-invariant vector. By Lemma 12.10 (cf. Lemma 12.1.5, [BO]), there exists a nonzero Λ-invariant vector, i.e., condition (1) holds.

Further examples

Definition 12.15. Let Γ be a locally compact group. A lattice in Γ is a discrete subgroup Λ of Γ such that Γ / Λ carries a finite Γ-invariant regular Borel measure. (Such a measure is unique up to a constant.)

Theorem 12.16. Let Γ be locally compact and let $\Lambda \subset \Gamma$ be a discrete subgroup. If Λ is a lattice in Γ, then Γ has property (T) if and only if Λ has property (T).

Examples 12.17.

(1) $\mathrm{SL}(2, \mathbb{R})$ does not have property (T) (because $\mathbb{F}_{2} \hookrightarrow \mathrm{SL}(2, \mathbb{R})$ as a lattice). Also $\mathrm{SL}(2, \mathbb{Z})$ does not have property (T).
(2) $\mathrm{SL}(n, \mathbb{Z})$ is a lattice in $\mathrm{SL}(n, \mathbb{R})$ for all $n \geq 3$. Both have property (T$)$.
(3) $\mathrm{SL}(n, \mathbb{Z}) \ltimes \mathbb{Z}^{n}$ is a lattice in $\mathrm{SL}(n, \mathbb{R}) \ltimes \mathbb{R}^{n}$ for all $n \geq 3$. Both have property (T).

[^0]: ${ }^{\ddagger}$ To see this, set

 $$
 U_{x}=\{y \in X| | f(y)-f(x) \mid<\varepsilon \text { for all } f \in F\}
 $$

