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Abstract

Recent work by Xin Li has shown how to naturally associate C*-
algebras to Garside categories and to present these as groupoid
algebras for appropriately chosen groupoids, obtaining a unifying
theory encompassing many important special cases. This thesis
will be a quick tour of Garside theory on left cancellative small cat-
egories, as well as groupoids and C*-algebras arising from them,
containing the fundamental results, underpinning this endeavor
and leading to structural characterizations, with an application to
higher-rank graphs as a typical example.
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♪ 1

Preliminaries

1.1 Inverse semigroups and characters

In this subsection we briefly go through necessary topics of inverse semigroups and characters roughly
following Cuntz et al. [1].

Definition 1.1 (Semigroup). A semigroup is a set S equipped with a binary operation S× S→ S called
multiplication, satisfying associativity, that is, for all a,b,c ∈ S, (xy)z = x(yz).

In other words, a semigroup is a set with a binary operation that is associative. It does not necessarily
have an identity element or inverses.

Definition 1.2 (Inverse semigroup). An inverse semigroup is a semigroup S with the property that for
every x ∈ S, there is a unique y ∈ S with x = xyx and y = yxy. We write y = x−1 and call y the inverse of
x. An inverse semigroup S is called an inverse semigroup with zero if there is a distinguished element
0 ∈ S satisfying 0 · x = x ·0 = 0 for all x ∈ S.

Definition 1.3 (Idempotent). Let S be an invese semigroup. An element e ∈ S is called an idempotent if
e2 := ee = e.

Proposition 1.4 (Basic properties of an inverse semigroup). Let S be an inverse semigroup. Then the
following hold

(i) For every x, (x−1)−1 = x;

(ii) For every x ∈ S, x−1x and xx−1 are both idempotents;

(iii) If e is an idempotent then e−1 = e

(iv) Every idempotent e ∈ S is of the form e = x−1x for some x ∈ S.

Lemma 1.5 (Closure of idempotents under multiplication). In an inverse semigroup, the product of two
idempotents is again an idempotent.

Proof. Let S be an inverse semigroup and let e, f ∈ S be two idempotents. We check that (e f )−1 =
f (e f )−1e:

(e f )( f (e f )−1e)(e f ) = e f 2(e f )−1(e2 f ) = e f (e f )−1e f = e f

and

( f (e f )−1e)(e f )( f (e f )−1e) = f (e f )−1e2 f 2(e f )−1e = f ((e f )−1(e f )(e f )−1)e = f (e f )−1e.
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CHAPTER 1. PRELIMINARIES

Therefore, by uniqueness of inverses in the definiton of an inverse semigroup,

(e f )−1 = f (e f )−1e.

It follows that

((e f )−1)2 = ( f (e f )−1)2 = f (e f )−1e f (e f )−1e = f (e f )−1e = (e f )−1.

This tells us that the inverse of e f is an idempotent. Thus e f = (e f )−1 is also an idempotent by Propo-
sition 1.4 (iii).

Lemma 1.6 (Commutativity of idempotents). In an inverse semigroup, any two idempotents commute.

Proof. Using the notations from Lemma 1.5, we have

(e f )( f e)(e f ) = e f e f = e f

and
( f e)(e f )( f e) = f e f e = f e

so f e = (e f )−1 = e f as desired.

Theorem 1.7 (Inverse of a product in an inverse semigroup). Let S be an inverse semigroup, then
(xy)−1 = y−1x−1 for all x,y ∈ S.

Proof. We have
xy(y−1x−1)xy = x(yy−1)(x−1x)y = xx−1yy−1y = xy

and
y−1x−1(xy)y−1x−1 = y−1yy−1x−1xx−1 = y−1x−1,

where we used the commutativity of idempotents from Lemma 1.6.

Before giving the fundamental example of an inverse semigroup, we state the definition of a partial
bijection.

Definition 1.8 (Partial bijection). A partial bijection on a set X is a bijection between some subsets of X .

Example 1.9 (Fundamental example: partial bijections). For any set X , let I(X) be the set of all partial
bijections on X . Every inverse semigroup can be realized as a partial bijection on a fixed set. Multipli-
cation is given by composition. For partial bijections s : dom(s)→ im(s) with another partial bijection
t : dom(t)→ im(t), we define the domain of their composition s◦ t by

dom(s◦ t) := dom(t)∩ t−1(dom(s)) = t−1(dom(s)∩ im(t))

to make sure that the image of the restriction of t lies in the domain of s. The inverse of a partial bijection
s : dom(s)→ im(s) is the usual set-theoretical inverse s−1 : im(s)→ dom(s) Thus dom

(
s−1
)
= im(s)

and im
(
s−1
)
= dom(s). In case there is partial bijection 0 : ∅→∅, which is nowhere defined, we call it

a zero bijection. We see that s−1s : dom(s)→ dom(s) and ss−1 : im(s)→ im(s) are just the identies on
dom(s) and im(s), denoted by Iddom(s) and Idim(s), respectively.

Definition 1.10 (Semilattice of idempotents). The semilattice E of idempotent in an inverse semigroup
S is given by:

E =
{

x−1x : x ∈ S
}
=
{

xx−1 : x ∈ S
}
=
{

e ∈ S : e = e2}
The order relation “≤” on E is given by

e≤ f ⇐⇒ e = e f
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Note that the equalities hold because of Proposition 1.4 (iv).

Proposition 1.11. The order ≤ defined above is a partial order.

Proof. If e≤ f and f ≤ e, then e = e f and f = f e. Since any two idempotents commute by Lemma 1.6,
e = e f = f e = e.

Example 1.12 (Idempotents of partial bijections). Back to the Fundamental example 1.9, the semilattice
of idempotents is given by

E(X) := {dom(s) : s ∈ I(X)}= {im(s) : s ∈ I(X)}

Here dom(s) is identified with Iddom(s) = s−1s, and im(s) is identified with Idim(s) = ss−1.
Multiplication in this semilattice is given by the intersection of sets, and the partial order is given by

the inclusion of sets. The distinguished zero element, if it exists, is given by the empty set.

We will frequently use these identifications from Example 1.9 and Example 1.12 in this thesis.

Proposition 1.13 (Conjugation action). Let S be an inverse semigroup and let E be its semilattice of
idempotents. For every x ∈ S and e ∈ E, the conjugation x−1ex still lies in E. Moreover, the conjugation
action preserves the partial order.

Proof. We have
x−1ex = x−1e−1ex = (ex)−1(ex)

which is an idempotent. The first equality comes from Proposition 1.4 (iii) and the second equality is
because of Theorem 1.7.

Suppose e, f ∈ E, with e≤ f . By definition, we have e = e f . Then for any x ∈ S,

x−1ex = x−1e f x = x−1xx−1e f x = (x−1ex)(x−1 f x).

The second equality is bee ause x−1 = x−1xx−1 by the axioms of an inverse semigroup, and the third
equality is because idempotents in an inverse semigroup commute. Thus x−1ex≤ x−1 f x.

Definition 1.14 (Character). Let S be an inverse semigroup and E be its semilattice of idempotents.
A character on E is a nonzero, multiplicative map χ : E → {0,1} which sends 0 ∈ E (if it exists), to
0 ∈ {0,1}.

Note that we always have χ(IdX) = 1 for all characters χ because they are required to be nonzero.
Let Ê be the set of characters on E, and we endow Ê with pointwise-convergence topology. Ê is called
the space of characters. We will see that the family {χ−1(1) : χ ∈ Ê} is an Ê-valued filter, where for
each χ ∈ Ê, χ−1(1) = {e ∈ E : χ(e) = 1}. Let’s first recall the definition of a filter on a set.

Definition 1.15 (Filter). A filter F on a set X is a collection of subsets of X that is

(i) downward directed: A,B ∈F implied that there exists a C ∈F such that C = A∩B;

(ii) non-empty: F ̸=∅;

(iii) upward closed: A ∈F and A⊆ B⊆ X implies B ∈F .

The family F = {χ−1(1) : χ ∈ Ê} is a filter because

- χ−1(1) ̸=∅ by definition of χ . Thus item (ii) is satisfied;
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- For all e, f ∈ E (viewed as the inclusion of sets) with e ∈ f , e ∈ χ−1(1) implies that f ∈ χ−1(1).
Thus item (iii) is satisfied;

- For all e, f ∈ E with e, f ∈ χ−1(1), we have e f ∈ χ−1(1) (viewed as the intersection of sets). Thus
item (i) is satisfied.

From the definition of a character, we can see further that there is a one-to-one correspondence
between the set of characters in Ê and the filters on E. On the one hand, every χ ∈ Ê is uniquely
determined by χ−1(1) simply because each χ has only two values 0 and 1. On the other hand, every
filter F on E determines a unique χ ∈ Ê with χ−1(1) = F , by defining χ : E → {0,1}, with χ(e) = 1
for all e ∈F and zero otherwise.

Definition 1.16 (The boundary). Let E be the semilattice of idempotents of and inverse semigroup. We
define the boundary of the space of characters Ê as

Êmax = {χ ∈ Ê : χ
−1(1) is maximal along all characters on E}.

Here “χ−1(1) is maximal along all characters on E” means that if there is another character ψ ∈ Ê such
that χ−1(1) ⊆ ψ−1(1), then χ−1(1) = ψ−1(1) (and equivalently χ = ψ by the remarks given after the
definition of filters)

Let E∗ = E \{0} if 0 ∈ E.

Lemma 1.17. Let E be a semilattice of idempotents of an inverse semigroup with distinguished zero
elements 0. Suppose that χ ∈ Êmax satisfies χ(e) = 0 for some e ∈ E∗. Then there exists an f ∈ Ê with
χ( f ) = 1 and e f = 0.

Proof. If for every f ∈ E with χ( f ) = 1 satisfies e f = 0, the we define F by requiring that for every
f ∈ E∗, f̃ ∈F if there exists and f ∈ E∗ with χ( f ) = 1 and e f ≤ f̃ .

Then F is a filter so that there exists a character χF ∈ Ê with χ
−1
F (1) = F by the one-to-one corre-

spondence.
By construction, we have that { f ∈ E∗ : χ( f ) = 1} ⊆ { f ∈ E∗ : χF( f ) = 1}. But χF(e) = 1 while

χ(e) = 0. This contradicts the maximality of χ−1(1).

1.2 Groupoids

In this subsection we briefly go through necessary topics in groupoids roughly following Sims [8].

Definition 1.18 (Groupoid). A groupoid is a set G together with a distinguished subset G (2) ⊆ G ×G ,
a multiplication map (α,β ) 7→ αβ from G (2) to G and an inverse map γ 7→ γ−1 from G to G satisfying
the following three axioms

(1)
(
γ−1
)−1

= γ for all γ ∈ G ;

(2) if (α,β ) and (β ,γ) belong to G (2), then (αβ ,γ) and (α,βγ) belong to G (2) with (αβ )γ = α(βγ);
and

(3)
(
γ,γ−1

)
∈ G (2) for all γ ∈ G , and for all (γ,η) ∈ G (2), we have γ−1(γη) = η and (γη)η−1 = γ .

Elements in G (2) are called multiplicable pairs. Elements of the form γ−1γ for some γ ∈ G are called
units. Let G (0) denote the set of units. G (0) is called the unit space.

We see from the axioms of a groupoid that not every two elements are multiplicable. Let U and V be
two subsets of G , then by axioms we write

UV := {αβ : α,β ∈ G with (α,β ) ∈ G (2)}.
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Definition 1.19 (Source and range). Let G be a groupoid. For every γ ∈ G we define its source s(γ) :=
γ−1γ and its range r(γ) := γγ−1. This gives two maps s, r : G → G (0) ⊆ G .

Proposition 1.20 (Basic properties of a groupoid). Let G be a groupoid.

(i) For every γ ∈ G , (r(γ),γ),(γ,s(γ)) ∈ G and r(γ)(γ) = γ = γs(γ);

(ii) For every γ ∈ G , r(γ−1) = s(γ) and s(γ−1) = r(γ);

(iii) Cancellation law: If (α,γ),(β ,γ)∈G (2) such that αγ = βγ , then α = β . Similarly if (γ,α),(γ,β )∈
G (2) such that γα = γβ , then α = β ;

(iv) For all γ ∈ G (0), we have r(γ) = γ = s(γ).

Lemma 1.21 (Uniqueness). Let G be a groupoid and let gamma be its element. Then γ−1 is the unique
element such that (γ,γ−1) ∈ G (2) and γγ−1 = r(γ), and also the unique element such that (γ−1,γ) ∈ G (2)

and γ−1γ = s(γ).

Proof. If (γ,α) ∈ G (2) and γα = r(γ) = γγ−1, then axiom (2) shows that
(
γ−1γ,α

)
∈ G (2) and α =

γ−1γα = γ−1r(γ) = γ−1s
(
γ−1
)
= γ−1. A similar argument shows that αγ = s(γ) only for α = γ−1

Lemma 1.22 (Compatiability of the source and range). Let G be a groupoid. Then (α,β ) ∈ G (2) if and
only if s(α) = r(β ).

Proof. Suppose that s(α) = r(β ), that is α−1α = ββ−1. Then we have (α,ββ−1) = (α,α−1α) ∈ G (2).
Since (ββ−1,β ) is also in G (2), then by axiom (2) (α,β ) = (α,ββ−1β ) ∈ G (2). Conversely, suppose
(α,β ) ∈ G (2), then by axiom (1) and (2), (α−1,αβ ) ∈ G (2) with α−1αβ = β = r(β ). Then Proposition
1.20 (iii) cancellation law shows that s(α) = α−1α = r(β ).

Lemma 1.23. Let G be a groupoid. If (α,β ) ∈ G (2) then so is (β−1,α−1).

Proof. Suppose that (α,β ) ∈ G (2). Then

(β−1,s(β−1)) = (β−1, r(β )) = (β−1,s(α)) = (β , r(α−1)) ∈ G (2),

where the first and third equalities are from Proposition 1.20 (ii), and the second equality id from Lemma
1.23. Also, (r(α−1),α−1) ∈ G (2) by Lemma 1.23.

Therefore, (β−1,α−1) = (β ,α−1αα−1) = (β−1, r(α−1)α−1) ∈ G (2).

Theorem 1.24. Let G be a groupoid. Then (αβ )−1 = β−1α−1 for all (α,β ) ∈ G (2).

Proof. (β−1,α−1) ∈ G (2) is seen in Lemma 1.23. We have (αβ )(β−1α−1) = αα−1. Multiplying
(αβ )−1 on the left of both sides and by axiom (3), we have

β
−1

α
−1 = (αβ )−1(αβ )β−1

α
−1 = (αβ )−1

αα
−1 = (αβ )−1.

Proposition 1.25 (Characterization of the unit space). Let G be a groupoid. Then the unit space G (0)

has an explicit form
G (0) = {γ ∈ G : (γ,γ) ∈ G (2) with γ

2 = γ}.

Also, γ = γ−1γ = γγ−1 for every γ ∈ G (0).
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Proof. For every γ ∈G , γ =α−1α for some α ∈G . Then (γ,γ)∈G (2) because (α−1,α),(α,α−1)∈G (2)

give (α−1α,α−1) ∈ G (2), together with (α−1,α) ∈ G (2) again yielding (α−1α,α−1α) = (γ,γ) ∈ G (2),
by repeatedly using axioms (1) and (2). Conversely, suppose that (γ,γ) ∈ G (2), with γ2 = γ . Then
γ2 = γ = γ(γ−1γ). Using Proposition 1.20 (iii) cancellation law, γ = γ−1γ ∈ G (0).

Corollary 1.26. If γ,η ∈ G (0), then (γ,η) ∈ G (2) (if and) only if γ = η .

Proof. If (γ,η) ∈ G (2) then by Lemma 1.22 and Proposition 1.25, γ = s(γ) = r(η) = η .

Definition 1.27 (Groupoid homomorphism). Let G and H be two groupoids. A map ϕ : G →H is a
groupoid homomorphism if for all (α,β ) ∈ G (2), (ϕ(α),ϕ(β )) ∈H (2) and ϕ(αβ ) = ϕ(α)ϕ(β ).

Proposition 1.28. Let G and H be groupoids and ϕ : G →H be a groupoid homomorphism. Then for
every γ ∈ G ,

(i) ϕ(G (0))⊆H (0);

(ii) ϕ(γ−1) = ϕ(γ)−1;

(iii) ϕ(s(γ)) = s(ϕ(γ)) and ϕ(r(γ)) = r(ϕ(γ)).

Proof. (i) We use the characterization in Proposition 1.25. Let γ ∈ G (0). Then (γ,γ) ∈ G (2) and
γ2 = γ . Then (ϕ(γ),ϕ(γ)) ∈H (2) and ϕ(γ) = ϕ(γ2) = ϕ(γ)ϕ(γ) = ϕ(γ)2, so that ϕ(γ) ∈H (0).

(ii) By axiom (3) of a groupoid, (γ−1,γ) ∈ G (2) and hence (ϕ(γ−1),ϕ(γ)) ∈H (2) with ϕ(γ−1γ) =
ϕ(γ−1)ϕ(γ). Multiplying ϕ(γ)−1 on the right of each term of both sides and using (i),

ϕ(γ)−1 = ϕ(γ−1
γ)ϕ(γ)−1 = ϕ(γ−1)ϕ(γ)ϕ(γ)−1 = ϕ(γ−1).

(iii) This can be directly checked using (ii).

Let G be a groupoid. For a given x∈ G (0) we write Gx := {γ ∈ G : s(γ) = x}, G x := {γ ∈ G : r(γ) = x}
and G y

x := Gx∩G y.

Definition 1.29 (Isotropy subgroupoid). Let G be a groupoid. The isotropy subgroupoid of G is defined
as the subset

Iso(G ) :=
⋃

x∈G (0)

G x
x = {γ ∈ G : r(γ) = s(γ)}

endowed with the same multiplication and inverse as for G .

It is straightforward to see that the isotropy subgroupoid is indeed a subgroupoid.

Definition 1.30 (Topological groupoid). A topological groupoid is a groupoid G endowed with a locally
compact topology under which G 0 ⊆ G is Hausdorff in the relative topology. Moreover, we require
that the source s, the range r and the inverse operation (·)−1 are continuous, and the multiplication
(α,β ) 7→ αβ with respect to the relative topology on G (2) as a subset of G ×G is also continuous.

Definition 1.31 (Étale groupoid). A topological groupoid G is étale if the range map r : G → G is a local
homeomorphism.

Lemma 1.32. If G is an étale groupoid, then G (0) is open in G .

Proof. For every γ ∈ G we can choose an open subset Uγ such that r : Uγ → r(Uγ) is a homeomorphism
onto an open set. Then G (0) =

⋃
γ∈G r(Uγ) is open.

9
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Definition 1.33 (Bisection). A subset B of an étale groupoid G is called a bisection if there is an open
subset U containing B such that r : U → r(U) and s : U → s(U) are both homeomorphisms onto their
images.

We will mainly focus on second-countable Hausdorff étale groupoids because they possess some
nice properties.

Lemma 1.34. Every second-countable Hausdorff étale groupoid G has a countable base of open bisec-
tions.

Proof. Recall from topology that a second countable topological space is separable, so we can take
countable dense subset {γn}∞

n=1 of G . For each γn we can choose countable neighborhood bases {Un,i}i

and {Vn,i}i at γn such that the range map is a homeomorphism from each Un,i onto an open set and
the source map is also a homeomorphism from each Vn,i onto an open set. Then we obtain the family
{Un,i∩Vn,i : n, i ∈ N} which is a countable base of open bisections.

From Lemma 1.34 we immediately have the following conclusion.

Corollary 1.35. Let G be an étale groupoid. Then Gx and G x are both discrete sets.

Proof. It suffices to show that each singleton {γ} with γ ∈ Gx is open in Gx.
For each γ ∈ Gx we can choose an open bisection Uγ containing γ . Then Uγ ∩Gx = {γ} is a singleton

because s|Uγ
: Uγ → s(Uγ)⊆ G is a homeomorphism with s(Uγ ∩Gx) = x by definition. Therefore {γ} is

open in Gx.

1.3 Left cancellative small categories

Definition 1.36 (Category). A category C consists of the following data:

(i) A collection of objects Ob(C);

(ii) For every pair of objects A,B ∈ Ob(C), a collection of “arrows” called morphisms HomC(A,B);

(iii) For every triple of objects A,B,C ∈ Ob(C), a binary operation ◦ : HomC(B,C)×HomC(A,B)→
HomC(A,C), called composition, which satisfies the following axioms:

(a) Associativity: For all f ∈ HomC(C,D),g ∈ HomC(B,C),h ∈ HomC(A,B), we have f ◦ (g ◦
h) = ( f ◦g)◦h;

(b) Identity: For every object A ∈ Ob(C), there exists a morphism idA ∈ HomC(A,A), called the
identity morphism, such that for all f ∈ HomC(A,B), we have f ◦ idA = f and idB ◦ f = f .

Definition 1.37 (Isomorphism). In a category C, an isomorphism is a morphism f : A→ B between two
objects A and B that has an inverse, i.e., a morphism g : B→ A such that f ◦ g = idB and g ◦ f = idA,
where idA and idB are the identity morphisms on A and B, respectively. We also say that f is invertible.

Definition 1.38 (Small category). A small category C is a category where the collection of objects Ob(C)
and the collection of morphisms HomC(A,B) between any two objects A,B ∈ Ob(C) are sets.

A very typical example of a small category is a groupoid we have just seen before.

Example 1.39 (Monoid and groupoid as small categories). From the categorical perspective,

- A monoid is a small category with only one object.

10
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- A groupoid is a small category in which every morphism is an isomorphism.

For the sake of convenience, in a small category C we often abuse notations by writing C = Mor(C)
to refer to the set of morphisms. The set of isomorphisms is denoted by C∗. The set of objects is denoted
by C0. By identifying each v ∈ C0 as the identity morphism idv, we regard C0 as a subset of C∗(⊆ C).

Let d : C→ C0 and t : C→ C0 be the maps indicating the source and the target of a morphism
respectively. By the definition of a category, we require that for every c,d ∈C, the composition cd if and

only if t(d) = d(c), that is, d(d) t(d) = d(c) t(c)cd .
Given c ∈C and S⊆C, we define cS = {cs : s ∈ S, t(s) = d(c)}. We call the subset of the form cC a

principal ideal of C. For an object v ∈ C0, we can simply write vC for the principle ideal idv C.
In the remaining part of the thesis, we will mainly focus on left cancellative small categories.

Definition 1.40 (Left cancellative small category). A small category C is left cancellative if for all
c,x,y ∈ C with t(x) = t(y) = d(c),

cx = cy =⇒ x = y.

That is to say, we can cancel the same elements from the left in an equality.

Definition 1.41 (Left divisor, Right multiple). Let C be a left cancellative small category. For a given
b ∈ C, we say an element a ∈ C is a left divisor of b if b = ac for some c ∈ C (with t(c) = d(a)). We
also say that b is a right multiple of a, and we write this by a⪯ b. If a⪯ b but a ̸= b, we say that a is a
strict (or proper) left divisor of b, written as a≺ b.

For each b ∈ C, the set of left divisors of b is written as Div(b). Some easy but useful properties
come as follows.

Proposition 1.42. Let C be a small category. Then

(i) a⪯ b ⇐⇒ b ∈ aC ⇐⇒ bC⊆ aC;

(ii) Transitivity: a⪯ b,b⪯ c⇒ a⪯ c.

The proof of Proposition 1.42 is just a direct verification. We see that the left divisibility relation ⪯
behaves somewhat like a partial order.

Definition 1.43 (Closed under left divisors). A subfamily S of a small category C is said to be closed
under left divisors if for all s ∈ S, every left divisor of s still lies in S.

Definition 1.44 (Greatest left divisor in a subfamily). Let S be a subfamily of a small category C. Given
a ∈ C, an element s ∈ S is a divisor of a in S if s⪯ a and is the greatest in S in the sense that every r ∈ S
with r ⪯ a satisfies r ⪯ s.

Definition 1.45 (Closed under right comultiples). Let C be a small category. A subset S of C is a closed
under right comultiples if for all r,s∈ S and a∈C with r⪯ a and s⪯ a, there exists a t ∈ S with r⪯ t,s⪯ t
and t ⪯ a.

Definition 1.46 (Left Noetherian). A small category C is called left Noetherian if there exists no infinite
sequence · · · ≺ a3 ≺ a2 ≺ a1 in C.

A small category C is left Noetherian means that for every a ∈C, every strictly decreasing sequence
in Div(a) with respect to left divisibility is finite.

Similarly, we can define the concepts of right cancellative small categories, right divisors, and right
Noetherianity. We mentioned that a small category is said to be Noetherian if it is both left and right
Noetherian.

11
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Definition 1.47 (Atom). An element g of a left cancellative category C is called an atom if g is not
invertible and g is not a product of two non-invertible elements.

Definition 1.48 (=∗-equivalence). Let a,b ∈C be two elements in a left cancellative small category. We
say that a =∗ b if there exists an element c ∈ C∗ such that a = bc.

Remark 1.49. It is easy to see that the binary relation =∗ on C is indeed an equivalence relation. A
special warning is that one may thinks that any two invertible elements are =∗-equivalent, for b = aa−1b
for all a,b ∈ C∗. In fact, this is not true. This is because t(b) may not be the same as d(a−1) as required
in the definition of composition in a category. In particular, we note that vC∩wC = ∅ for distinct
v,w ∈ C0, but C0 ⊆ C∗. Therefore, C∗ is actually not an equivalence class itself.

Proposition 1.50. Let C be a left cancellative small category. Then we have

a =∗ b ⇐⇒ a ∈ bC∗ ⇐⇒ aC = bC ⇐⇒ b ∈ aC∗,

and hence a⪯ b,b⪯ a ⇐⇒ a =∗ b.

Proof. The first equivalence is straightforward. Also, if the second equivalence holds, then by “symme-
try” so does the third one. Thus we focus on showing the second equivalence.

Suppose a ∈ bC∗. Then a = bc0 for some c0 ∈ C∗. For all c ∈ C such that t(c) = d(a) = d(c0),
we have ac = bc0c = b(c0c) ∈ bC because c0c is still an element of C. Thus aC ⊆ bC. For bc ∈ bC
with t(c) = d(b), we have bc = bc0c−1

0 c = a(c−1
0 c) ∈ aC with t(c) = d(c−1

0 ) = t(c0). Thus bC ⊆ aC.
Therefore bC = aC.

Conversely, suppose aC = bC. Then a = bc for some c ∈ C and b = ac′ for some c′ ∈ C. Thus
b = b idd(b) = ac′ = bcc′ and a = a idd(a) = bc = ac′c. By left cancellative property of C, we have
cc′ = idd(b) and c′c = idd(a). By definition of isomorphisms, both c and c′ lie in C∗, so that a = bc ∈ bC∗.

From Proposition 1.50 we see in particular that the greatest left divisor of each element in C is unique
up to =∗-equivalence.

We know in general that the product of two invertible elements is again invertible. In fact, the
converse also holds in a left cancellative small category.

Proposition 1.51. Let C be a left cancellative small category. The product ab of two elements a,b ∈ C
with t(b) = d(a) is invertible (i.e., in C∗) if and only if both a and b are invertible.

Proof. If a,b ∈C∗ with t(b) = d(a) then so is ab. The crucial part is to see that ab is invertible implying
that both a and b are invertible.

Let x ∈ C be such that abx = idd(x) and xab = idd(b). Let y = bxa the yb = bxab = b idd(b) = b. By
left cancellative property of C we have that (bx)a = y = idt(b) = idd(a). Thus a is invertible, and b is also
invertible because b = a−1(ab) is a product of two elements.

Definition 1.52 (Commom right multiple). Let a,b be two elements in a small category C. An element
c ∈C is a common right multiple of a and b if there is an element a′ ∈C for a and b′ ∈C for b such that
c = aa′ = bb′. Equivalently, c ∈ aC∩bC.

Definition 1.53 (Minimal common right multiple). A common right multiple of a and b in a small
category C is called a minimal common right multiple if in addition, there is no proper left divisor d of
c that is still a common right multiple of a and b.

12
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Given two elements a,b in a small category C, there may be many or no common right multiples of
them. In this thesis, we write mcm(a,b) for the set of minimal common right multiples of a and b. In
the case of finitely aligned left cancellative small categories, the minimal common right multiples of any
two given elements exist are finite up to =∗-equivalence. This means there is no common right multiple
for distinct objects.

Definition 1.54 (Finitely aligned small category). A small category C is finitely aligned if for all a,b∈C
there exists a finite subset F ⊆ C such that aC∩bC =

⋃
c∈F cC.

Observe that inductively, a small category C is finitely aligned if and only if for finitely many
a1,a2, . . . ,an ∈ C, there is a finite subset F of C such that

⋂n
i=1 aiC =

⋃
c∈F cC.

Lemma 1.55. Let C be a left cancellative small category and a,b ∈ C. Then C is finitely aligned if and
only if mcm(a,b) is non-empty and contains only finitely many =∗-classes.

Proof. By definition, there exists a finite subset F ⊆ C such that aC∩bC =
⋃

c∈F cC. We can arrange F
so that each =∗-equivalence contains only one element by choosing a representative for each equivalence
class in aC∩ bC =

⋃
c∈F cC and delete the other =∗-equivalent elements without affecting the union.

Therefore we may assume that any two elements are not =∗-equivalent in F .
We claim that F ⊆ mcm(a,b). Let c ∈ F . Suppose that d ∈ aC∩ bC with c ∈ dC. Then there is

a c′ ∈ F such that d ∈ c′C by finite alignment of C. Then c ∈ c′C, so c = c′. Hence d ∈ cC. There
fore d =∗ c and c ∈ mcm(a,b). We further claim that for all f ∈ mcm(a,b) there is a c ∈ F such that
f =∗ c. To see this, let f ∈mcm(a,b). Then f ∈ aC∩bC, so there is a c ∈ f such that f ∈ cC. Since f is
minimal, we have that c =∗ f . Therefore, mcm(a,b) contains only finitely many =∗-equivalence class.

Conversely suppose mcm(a,b) is nonempty and contains only finitely many =∗-classes. By keeping
only one element in each =∗-equivalence class, we may assume that mcm(a,b) is a finite set. Note
that each element d ∈ aC∩ bC is a common right multiple of a and b, hence must be a multiple of
some minimal common right multiple of a and b. That is to say, d ∈ cC for some c ∈ mcm(a,b). Thus
aC∩bC =

⋃
c∈mcm(a,b) cC is the union of finitely many principal ideals.

13



♪ 2

Inverse semigroups from left cancellative
small categories

Let C be a left cancellative small category. Every c ∈ C induces a partial bijection σc : d(c)C −→ cC
given by x 7→ cx. We note that the left cancellativity assumption is essential because the injectivity of σc

comes from it. Using these partial bijections we can generate an inverse semigroup, as in the fundamental
example 1.9 given before.

Remark 2.1. Given c∈C, very often we may denote the induced partial bijection σc by c again, but here
we will keep the notation σc instead of c to avoid confusion between the inverse function σ−1

c (which
must exist by construction) of σc and the inverse of invertible elements c−1 (which does not necessarily
exist) of c in C.

Definition 2.2 (Left inverse hull of induced partial bijections). Let C be a left cancellative small cate-
gory. The inverse hull of C is defined to be the inverse semigroup generated by the set of all the partial
bijections {σc : c∈C}. That is, the smallest inverse semigroup containing all the partial bijections which
is closed under composition and inverses. We denote such an inverse semigroup by Il .

Definition 2.3 (A variation of the inverse semigroup Il). • Define J̄ to be the collection of subsets of
C of the form e\

⋃n
i=1 fi for some e, f1, . . . , fn ∈ J with f1, . . . , fn ≤ e.

• Define Īl to be the set of all partial bijections on C of the form s Idε with s ∈ Īl and ε ∈ J̄ such that
ε ≤ s−1s.

Note that J is naturally a subset of J̄. Il is again an inverse semigroup, whose semilattice of idempo-
tents is given by J̄.

The following proposition is a characterization of elements of Il .

Proposition 2.4 (Characterization of Il). Every element of Il is of the so-called zigzag form

σ
−1
dn

σcn · · ·σ−1
d1

σc1

for some di,ci ∈ C with t(ci) = t(di) and d(di) = d(ci+1), i = 1,2, . . . ,n, n ∈ N+.

Proof. Every element of Il , by definition, is of the form σamσam−1 · · ·σa1 , where m∈N and a1, . . . ,am ∈C
with compatiable sources and targets. The desired form is obtained by inserting some idv = id−1

v for
appropriate v ∈ C0 in the product if necessary.

14
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As described in Section 1.1, we denote semilattice of idempotents of Il by J, and the space of char-
acters of J by Ĵ, endowed with pointwise-convergence topology. A basis of compact open sets of Ĵ is
given by the sets of the form

Ĵ(e; f) = {χ ∈ Ĵ : χ(e) = 1 and χ( f ) = 0 for all f ∈ f}

where e ∈ J and f is a finite subset of J. We also write Ĵ(e) = {χ ∈ Ĵ : χ(e) = 1} for a given e ∈ J.

Definition 2.5 (The subspace Ω of Ĵ). We define the subspace Ω of Ĵ consisting of characters χ : J→
{0,1} with the property that whenever e, f1, . . . , fn ∈ J satisfy e =

⋃n
i=1 fi as subsets of C, then χ(e) = 1

imples that χ( fi) = 1 for some index i. The topology on Ω is the subspace topology from Ĵ.

A basis of compact open topology of Ω is given by Ω(e; f)= {χ ∈Ω : χ(e)= 1 and χ( f )= 0 for all f ∈
f}, where e ∈ J and f is a finite subset of J.

Example 2.6 (Character from an element). Let C be a left cancellative small category. Given x ∈ C, we
define χx : J→{0,1} by

χx(e) =

{
1, if xC⊆ e,

0, otherwise.

A basic property of such kind of characters is that two characters χx and χy are the same if and only
if x and y differ from an invertible element.

Proposition 2.7. Let x,y be two elements in a left cancellative small category C. Then χx = χy if and
only if xC = yC and if and only if x =∗ y.

Proof. If x = y ∈ C then trivially we have χx = χy. Conversely suppose that χx = χy then xC⊆ e if and
only if yC⊆ e. Take e = xC, and then yC⊆ xC because xC⊆ xC is always true. Similarly take e = yC,
and then xC⊆ yC. Therefore xC = yC.

It is straightforward to see that χx ∈Ω for all x ∈C. Such a type of characters will play an important
role in the remaining text. We state here two related lemmas without proof.

Lemma 2.8 (Li [5], Lemma 2.12). {χx : x ∈ C} is a dense subset of Ω with respect to the pointwise-
convergence topology.

Lemma 2.9 (Li [5], Lemma 2.13). Ω = Ĵ if and only if whenever e, f1, . . . , fn ∈ J satisfy e =
⋃n

i=1 fi as
subsets of C, then e = fi for some i.

Definition 2.10. Given s ∈ Il and χ ∈ Ĵ with requirement that χ(s−1s) = 1, we define another character
s.χ : J→{0,1} by (s.χ)(e) = χ(s−1es).

The requirement in the above definition is necessary since this ensures that the character is indeed a
nonzero map.

By Proposition 1.13, the characters s.χ for all s ∈ Il are well defined. This gives an action of Il on Ĵ.
In fact we have a homeomorphism Ĵ(s−1s)→ Ĵ(ss−1),χ 7→ s.χ .

Lemma 2.11 (Invariance of Ω). The subspace Ω from Definition 2.5 is Il-invariant, meaning that χ ∈Ω

implies that s.χ still lies in Ω for all s ∈ Il with χ(s−1s) = 1.

Proof. Suppose χ ∈ Ω and s ∈ Il . Let e, f1, . . . , fn ∈ J such that e =
⋃n

i=1 fi such that s.χ(e) = 1. Note
that s−1es = s−1 (

⋃n
i=1 fi)s =

⋃n
i=1 s−1 fis. Then χ(s−1es) = χ(

⋃n
i=1 s−1 fis) = 1. Since χ ∈ Ω, there is

an i such that s.χ( fi) = χ(s−1 fis) = 1. Thus s.χ ∈Ω.

15
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Because of Lemma 2.11, the characters s.χ also give an action of Il on Ω and similarly we have a
homeomorphism Ω(s−1s)→Ω(ss−1). The subspace Ω is invariant under the action of Il . This property
is important since this enables us to construct the transformation groupoid.

The following lemma will be frequently used later.

Lemma 2.12. Let s ∈ Il be a partial bijection on a small category C. If x is an element of C such that
xC⊆ dom(s) then s(xC) = s(x)C.

Proof. By Proposition 2.4, we write s in the zigzag form s = σ
−1
dn

σcn · · ·σ−1
d1

σc1 for some di,ci ∈ C with
t(ci) = t(di) and d(di) = d(ci+1), i = 1,2, . . . ,n, n ∈ N+. Since xC ⊆ dom(s), xC ⊆

⋃n
i=1(dom(σci)∩

dom(σ−1
di

)) =
⋃n

i=1(d(ci)C∩diC). Hence it suffices to see that for each a,b ∈C with xC⊆ aC∩bC, we
always have that σa(xC) = σa(x)C and σ

−1
b (xC) = σ

−1
b (x)C.

By definition, let xc ∈ xC, σa(xc) = axc = (ax)c ∈ σa(x)C, so σa(xC)⊆ σa(x)C. This equality also
gives the reverse inclusion. Hence σa(xC) = σa(x)C. Since x ∈ xC ⊆ bC, we write x = bc′ for another
c ∈C we have σ

−1
b (xc) = σ

−1
b (bc′c) = c′c = σ

−1
b (x)c ∈ σ

−1
b (x)C. Similarly, this equality also gives the

reverse inclusion. Hence σ
−1
b (xC) = σ

−1
b (x)C.

Remark 2.13. In Li [5], Lemma 2.12 is also frequently used and regarded as an obvious result without
being stated and proved, but it would be better to make it explicit.

Lemma 2.14. Let x ∈ C and s ∈ Il be such that χx(s−1s) = 1. Then s.χx = χs(x) for every x satisfying
xC⊆ dom(s).

Proof. By definition, s.χx(e) = 1 if and only if xC ⊆ s−1es, and χs(x) = 1 if and only if s(x)C ⊆ e. We
show that xC⊆ dom(es) if and only if s(x)C⊆ dom(e) when xC⊆ dom(s).

Since xC⊆ dom(es) = dom(s)∩ s−1(dom(e)), we have by Lemma 2.12 that

s(x)C = s(xC)⊆ im(s)∩dom(e)⊆ dom(e)

.
Conversely, if s(x)C⊆ dom(e), then again by Lemma 2.12,

xC = s−1s(xC) = s−1s(x)C⊆ s−1(dom(e)) = s−1(dom(e)∩ im(s)) = dom(es).
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Groupoid models for the left reduced
C*-algebra

3.1 The left reduced C*-algebra of a groupoid

Now we briefly go through the concepts of the left reduced C*-algebra of a groupoid, roughly following
Sims [8] and Li [5], respectively.

Let Cc(G ) be the space of complex-valued continuous functions f : G → C of compact support on
the topological groupoid G , where a support of f is defined to be supp( f ) := {γ ∈ G : f (γ) ̸= 0}.

Proposition 3.1 (*-algebra structure on Cc(G )). Let G be a second-countable locally compact Hausdorff
étale groupoid. Then we have the following

• For every γ ∈ G , the set {α ∈ G r(γ) : f (α)g(α−1γ) ̸= 0} is finite.

• Cc(G ) becomes a *-algebra when equipped with multiplication ( f ∗g)(γ) =∑α∈G r(γ) f (α)g(α−1γ)
and the involution f ∗(γ) = f (γ−1).

We note that the multiplication in Proposition 3.1 is well defined because supp( f ∗g)⊆ supp( f )supp(g),
and it is easy to verify that supp( f )supp(g) is also compact.

Definition 3.2 (Convolution). Let G be a second-countable locally compact Hausdorff étale groupoid.
For f ,g ∈Cc(G ), the multiplication

( f ∗g)(γ) = ∑
α∈G r(γ)

f (α)g(α−1
γ)

defined in Proposition 3.1 is called the convolution of f and g.

In a second-countable locally compact Hausdorff étale groupoid G , there is a *-representation

πx : Cc(G )−→B(ℓ2(Gx))

for each x ∈ G (0) defined by πx( f )(δγ) = f ∗ δγ . πx is known as the regular representation of Cc(G )
associated to x ∈ G (0). Then we can state the definition of the left reduced C*-algebra.

Definition 3.3 (Left reduced C*-algebra of a groupoid). Let G be a second-countable locally compact
Hausdorff étale groupoid. The left reduced C*-algebra C∗r (G ) of G is the completion of the subspace( ⊕

x∈G (0)

πx

)
(Cc(G ))⊆

⊕
x∈G (0)

B(ℓ2(Gx))

17
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with respect to the norm given in the direct sum of Hilbert spaces, where
(⊕

x∈G (0) πx
)

is a *-representation
given by ( ⊕

x∈G (0)

πx

)
: Cc(G )−→

⊕
x∈G (0)

B(ℓ2(Gx)),

f 7−→ (πx( f ))x∈G (0) .

We should note that this *-representation is actually injective. Roughly speaking, this is because
f ∗δγ = 0 for every γ ∈ G implies that f = 0 on G .

3.2 The left reduced C*-algebra of a left cancellative small category

Let C be a left cancellative small category and C denotes the space of complex numbers. Define the
ℓ2(C) space to be

ℓ2(C) =

{
f : C→ C

∣∣∣ ∑
c∈C
| f (c)|2 < ∞

}
,

where
∑
c∈C
| f (c)|2 := sup

F⊆C finite
∑
c∈F
| f (c)|2.

ℓ2(C) is a Hilbert space when we equip it with the well-defined inner product

⟨·, ·⟩ : C−→ C,

⟨ f ,g⟩= ∑
c∈C

f (c)g(c).

The standard orthonormal basis of ℓ2(C) is given by {δx}x∈C, where δx : C→ C, y 7→ 1 if y = x and
y 7→ 0 if y ̸= x.

Given x∈C, for each c∈C, the assignment δx 7→ δcx if t(x) = d(c) and δx 7→ 0 if t(x) ̸= d(c) extends
by linearity to a bounded linear operator on ℓ2(C), which is denoted by λc, i.e., λc ∈B(ℓ2(C)). Left
cancellative property is essential here to ensure boundedness and also this implies that this is actually a
partial isometry.

Definition 3.4 (Left reduced C*-algebra of a left cancellative small category). Let C be a left cancellative
small category. The left reduced C*-algebra of C, denoted by C∗

λ
(C), is defined by the C*-algebra

generated by the partial isometries {λc}c∈C.

Formally, we have that C∗
λ
(C) :=C∗({λc : c ∈ C})⊆B(ℓ2(C)).

In the remaining part of this section, we provide two candidates of groupoid models for the left
reduced C*-algebra.

3.3 Two groupoid models for the left reduced C*-algebra

Define the set
Il ∗Ω := {(s,χ) ∈ Il×Ω : χ(s−1s) = 1}.

Definition 3.5 (Transformation groupoid). Define an equivalence relation ∼ on Il ∗Ω by

(s,χ)∼ (t,ψ) ⇐⇒ χ = ψ and there exists an e ∈ J with χ(e) = 1 and se = te.

The equivalence classes with respect to ∼ are denoted by [·].
The transformation groupoid Il ⋉Ω is the set of equivalence classes Il ∗Ω/∼ equipped with

18
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- the source map s([s,χ]) = χ and the range map r([s,χ]) = s.χ;

- multiplication [s, t.χ][t,χ] = [st,χ];

- inversion [s,χ]−1 = [s−1,s.χ].

For a subset U of Ω, write [s,U ] := {[s,χ] : χ ∈U}. The topology on Il ⋉Ω is given by requiring
[s,Ω(s−1s)] to be open sets for all s∈ Il and the source map restricted to [s,Ω(s−1s)] is a homeomorphism
onto Ω(s−1s) by [s,χ] 7→ χ .

Definition 3.6 (A variation of the transformation groupoid). Define an equivalence relation ∼̄ on Il ∗Ω

by
(s,χ)∼̄(t,ψ) ⇐⇒ χ = ψ and there exists an ε ∈ J̄ with χ(Idε) = 1 and s Idε = t Idε .

The equivalence classes with respect to ∼ are denoted by [·]∼̄.
The groupoid Il⋉̄Ω is the set of equivalence classes Il ∗Ω/∼̄ with source map, range map, multipli-

cation and inversion defined in the same way as for Il ⋉Ω.
For a subset U of Ω, write [s,U ]∼̄ := {[s,χ]∼̄ : χ ∈U}. The topology on Il⋉̄Ω is given by requiring

[s,Ω(s−1s)]∼̄ to be open sets for all s ∈ Il and the source map restricted to [s,Ω(s−1s)]∼̄ is a homeomor-
phism onto Ω(s−1s) by [s,χ]∼̄ 7→ χ .

We now see what the unit space of Il ⋉Ω is. As expected, the unit space (Il ⋉Ω)(0) should be
homeomorphic to Ω.

Proposition 3.7. For any s, t ∈ Il , (s−1s,χ) ∼ (t−1t,χ) in the set Il ∗Ω. In other words, when fixing an
χ ∈Ω, for all idempotents e of Il with χ(e) = 1, (e,χ) are in the same equivalence class.

Proof. We have by assumption that χ(s−1s) = χ(t−1t) = 1. Let e = s−1st−1t. Then

χ(e) = χ(s−1st−1t) = χ(s−1s)χ(t−1t) = 1,

Also,
s−1se = s−1ss−1st−1t = s−1(ss−1s)t−1t = s−1st−1t = e

and
t−1te = et−1t = s−1st−1tt−1t = s−1st−1t = e,

where we used the property that idempotents commute in an inverse semigroup (Lemma 1.6). Hence
indeed, (s−1s,χ)∼ (t−1t,χ).

From the above proposition we know that the unit space (Il ⋉Ω)(0) is given by

(Il ⋉Ω)(0) = {[e,χ] : χ ∈Ω, (any) e ∈ J with χ(e) = 1} .

We can check by definition that for every [s,χ] ∈ Il ⋉Ω, the range r([s,χ]) and the source s([s,χ])
both lie in (Il ⋉Ω)(0). For example,

r([s,χ]) = [s,χ][s,χ]−1 = [s,χ][s−1,s.χ]

= [s,(s−1).(s.χ)][s−1,s.χ]

= [ss−1,χ] = [e,χ]

with e = ss−1 which is an idempotent. Similarly we can see s([s,χ]) = [e,χ] for some e ∈ J. Moreover,
(Il ⋉Ω)(0) ∼= Ω through the map [e,χ] 7→ χ , so we can identify (Il ⋉Ω)(0) with Ω without concern.

By construction, there is a canonical projection Il ⋉Ω ↠ Il⋉̄Ω. We now explore under which kinds
of further assumptions these two groupoids are isomorphic. But let’s quickly go through some easy
results related to these two groupoids without proof.
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Proposition 3.8 (Li [5], Lemma 3.1). (i) The canonical projection Il ⋉Ω↠ Il⋉̄Ω is an open quotient
map.

(ii) The canonical projection Il ⋉Ω ↠ Il⋉̄Ω takes bisections to bisections.

(iii) The identity map on Ω induces a one-to-one correspondence between (Il ⋉Ω)-invariant subsets to
Il⋉̄Ω-invariant subsets.

We will see that under the assumption that either the ambient category C is finitely aligned or the
transformation (topological) groupoid is Hausdorff, the canonical projection is a groupoid isomorphism.

Before giving the next lemma, we mention the notion of the union of a family of functions. Let
{ fi : i ∈ I} be a family of functions such that for all i, j ∈ I, fi and f j agree on the intersection of their
domains. Then we define the union of this family of functions as a new function

⋃
i∈I fi by mapping x to

fi(x) if x ∈ dom( fi).

Lemma 3.9. Let C be a finitely aligned left cancellative small category. Then the following statements
hold.

(i) Every e ∈ J is a union of finitely many principal ideals. That is, e =
⋃

x∈F xC for some finite subset
F ⊆ C.

(ii) Every χ ∈ Ω is determined by the family of principal ideals where the value of χ is 1, that is,
F χ

p := {xC : x ∈C with χ(xC) = 1}, in the sense that for every e ∈ J, χ(e) = 1 if and only if there
is an xC ∈Fp such that xC⊆ e. Moreover, a basis of compact open sets for Ω is given by sets of
the form Ω(xC;y1C, . . . ,ynC).

(iii) Every s ∈ Il is a finite union of partial bijections of the form σcσ
−1
d with c,d ∈C and d(c) = d(d).

(iv) We have
Il ⋉Ω =

{
[σcσ

−1
d ,χ] : c,d ∈ C,d(c) = d(d),(σcσ

−1
d ,χ) ∈ Il ∗Ω

}
.

Proof. (i) For each e ∈ J ⊆ Il , e is identified as dom(e) and we write e in the zigzag form e =
σ
−1
dn

σcn · · ·σ−1
d1

σc1 with ci,di ∈C, i = 1, . . . ,n. For every c,d ∈C, the domain of σ
−1
d σc is σc(dC∩

cC). Using finite alignment assumption, there is a finite subset F ⊆ C such that dC∩ cC =⋃
f∈F f C. Thus,

dom(σ−1
d σc) = σ

−1
c (dC∩ cC) = σ

−1
c

(⋃
f∈F

f C

)
=
⋃
f∈F

σ
−1
c ( f C) =

⋃
f∈F

σ
−1
c ( f )C,

where the last equality is from Lemma 2.12. Repeated application of this reduces the domain of
every zigzag map to the required form.

(ii) Since χ ∈ Ω and e =
⋃n

i=1 for some {xi}n
i=1 ⊆ C by (i), then χ(e) = 1 implies that there is an xi

for some index i such that χ(xiC) = 1. Thus xiC ∈F χ
p with xC⊆ e. Conversely, if there exists an

xC ∈F χ
p with xC⊆ e, then χ(xC) = 1. Indeed, xC∩ e = xC and by multiplicative property of χ ,

χ(xC)χ(e) = χ(xC∩ e) = χ(xC) = 1. Hence χ(e) = 1.

Now we set out to prove the latter statement. On the one hand, Ω(xC;y1C, . . . ,ynC) is indeed of
the form Ω(e; f) by simply taking e = xC and f = {y1C, . . . ,ynC}. On the other hand, let Ω(e; f)
be a basis element of Ω with e ∈ J and f a finite subset of J. By (i), χ(e) = 1 if and only if there
is an x ∈ C with χ(xC) = 1. For f = { f1, . . . , fm}, fi =

⋃ni
k=1 yi,kC for each i = 1, . . . ,m. Thus

χ( fi) = 0 for each i = 1, . . . ,m implies that χ(yi,kC) = χ( fi∩ yi,kC) = χ( fi)χ(yi,kC) = 0 for each
k = 1, . . . ,ni. Thus we have that Ω(e; f) = Ω(xC;y1,1C, . . . ,ym,nmC).
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(iii) From the proof of (i) we see that

σ
−1
d σc =

⋃
f∈F

(
σ

σ
−1
d ( f )

)(
σ
−1
σ
−1
c ( f )

)
, F ⊆ C finite,

with both σ
−1
d ( f ) and σ−1

c ( f ) lying in C. d(σ−1
d ( f ))=d(σ−1

c ( f )) is because we need d(σ−1
d ( f ))∩

d(σ−1
c ( f )) ̸=∅. This is equivalent to say that d(σ−1

d ( f )) = d(σ−1
c ( f )).

Repeated application of this reduces a zigzag map to the required form and every s ∈ Il is a finite
union of the form σ

−1
d σc by Proposition 2.4.

(iv) The characterization of Il ⋉Ω and Il⋉̄Ω follows immediately from (iii) and the definition of the
transformation groupoid.

Theorem 3.10. The canonical projection Il ⋉Ω ↠ Il⋉̄Ω is a groupoid isomorphism if either of the
following conditions holds:

(1) C is finitely aligned.

(2) Il ⋉Ω is Hausdorff.

Proof. Since the canonical projection is a surjective map, it remains to see that this is also injective. Let
(s,χ) and (t,χ) be two elements in Il ∗Ω such that (s,χ)∼̄(t,χ). By definition there is an ε ∈ J̄ with
χ(Idε) = 1 and s Idε = t Idε .

Suppose firstly that C is finitely aligned. Then by definition of an element in J̄ and Lemma 3.9, we
may assume ε = xC\ (

⋃n
i=1 yiC) for some x,y1, . . . ,yn ∈ C. Since s Idε = t Idε , then xC⊆ dom(s) and in

particular,s(x) = t(x), so that when taking e = xC, se = s IdxC = s(x)C = t(x)C = t IdxC = te, by Lemma
2.12. Moreover, χ(ε) = 1 implies that χ(e) = 1 because ε ≤ e and 1 = χ(ε) = χ(εe) = χ(ε)χ(e).

Suppose secondly that Il ⋉Ω is Hausdorff. By the density of {χx : x ∈ C} (Lemma 2.8) in Ω we can
find a net {xi}i∈I in C with limi χxi = χ pointwise. As χ(ε) = 1, then χxi(ε) = 1 for all but finitely many
i ∈ I because each character has at most two values 0 and 1. Hence we may assume that χxi(ε) = 1 for
all i, i.e., xiC ⊆ ε . Take ei = xiC, then s Idε = t Idε implies in particular that sei = tei for each i. Thus
(s,χxi)∼ (t,χxi) so that [s,χxi ] = [t,χxi ] for each i. Now, in Il ⋉Ω with the homeomorphism [s,Ω(s−1s)]∼=
Ω(s−1s) given in the definition, limi[s,χxi ] = [s,χ] and limi[t,χxi ] = [t,χ], then [s,χ] = [t,χ] because in
a Hausdorff space, limit points are unique.

Theorem 3.11. Let C be a left cancellative small category. The groupoid Il⋉̄Ω is a groupoid model for
C∗

λ
(C), meaning that C∗

λ
(C)∼=C∗r (Il⋉̄Ω).

With Theorem 3.10 and 3.11, we have an immediate consequence:

Corollary 3.12. The transformation groupoid Il ⋉Ω is a groupoid model for C∗
λ
(C) if either C is finitely

aligned or Il ⋉Ω is a Hausdorff space.

3.4 Topological free and effective properties

As a side dish, we briefly mention the topological free and effective properties of the transformation
groupoid Il ⋉Ω and its variation Il⋉̄Ω.

Definition 3.13 (Topological free groupoid, Effective groupoid). • An étale groupoid G is topolog-
ical free if for every open bisection U not containing units of G , the set {x ∈ G (0) : G x

x ∩U ̸= ∅}
has empty interior.
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• An étale groupoid G effective if the interior of the isotropy subgroupoid coincide with the unit
space, that is to say, Iso(G )◦ = G (0).

Note that from the above definitions we can see that an étale groupoid G is topological free if and
only if for every open bisection U not containing units of G , the subspace {x ∈ s(U) : G x

x ∩U = ∅} is
dense in s(U). Also, effectiveness implies topological freeness.

We present some results of topological freeness and effectiveness of the transformation groupoid and
its variation.

Theorem 3.14 (Characterization of topological freeness of Il ⋉Ω). Define C∗,0 := {u∈C∗ : t(u) = d(u)}
and C∗,0 ⋉Ω := {[u,χ] ∈ Il ⋉Ω : u ∈ C∗,0}. Then the following are equivalent:

(i) Il ⋉Ω is topologically free;

(ii) C∗,0 ⋉Ω is topologically free;

(iii) For every v ∈ C0, every u ∈ idv C∗ idv and every finite subset { f1, . . . , fn} ⊆ J with fi ⊊ vC for all
i = 1, . . . ,n,

uz =∗ z for all z ∈ vC\
⋃n

i=1 fi implies that there is an x ∈ vC\
⋃n

i=1 fi with ux = x.

Proof. (i) implying (ii): By definition, C∗,0⋉Ω is an open subgroupoid of Il ⋉Ω. An is an open bisection
U ⊆ C∗,0 ⋉Ω with U ⊆ (C∗,0 ⋉Ω) \Ω is also an open bisection of Il ⋉Ω contained in (Il ⋉Ω) \Ω.
Here we identify the unit space of these two groupoids with Ω as described after Proposition 3.7. If
(I ⋉Ω)x

x ∩U = ∅, then so the intersection of (C∗,0 ⋉Ω)x
x with U is empty. Thus the topological free

property of Il ⋉Ω implies the the topological free property of C∗,0 ⋉Ω.
(ii) implying (i): Suppose on the converse that Il ⋉Ω is not topologically free. This implies that

Iso(Il ⋉Ω) has a nonempty interior. We can take an s ∈ Il and an open subset U of Ω(s−1s) such that
[s,U ] ⊆ (Il ⋉Ω) \Ω. By Lemma 2.8, there is an x ∈ C with χx ∈ U , and thus [s,χx] ̸= χx. However
by construction, s.χx = χx, so Lemma 2.14 implies that s(x) = xu for some u ∈ C∗,0 \C0. Take V =
Ω(xC)∩U ̸=∅. Now a direct computation shows that

[x,Ω(d(x)C)]−1[s,V ][x,Ω(d(x)C)] = [u,σ−1
x .V ],

and σ−1
x .V ̸=∅ because V is. The conjugation [u,σ−1

x .V ] = [x,Ω(d(x)C)]−1[s,V ][x,Ω(d(x)C)]⊆ Iso(C∗,0⋉
Ω)\Ω because [s,V ] is contained in Iso(Il ⋉Ω)\Ω. Therefore, C∗,0 ⋉Ω is not topologically free.

(ii) implying (iii): Assume uz =∗ z for all z∈ vC\
⋃n

i=1 fi. The subset Ω(vC; f1, . . . , fn) is an compact
open basis element of Ω and [u,Ω(vC; f1, . . . , fn)] ⊆ Iso(C∗,0 ⋉Ω). Since C∗,0 ⋉Ω is topological free
by assumption, there exists χ ∈Ω(vC; f1, . . . , fn) with [u,χ] = χ , i.e., there is a e ∈ J with χ(e) = 1 and
ue = e. Now χ(vC \

⋃n
i=1 fi) = 1 implies that e ⊈

⋃n
i=1 fi. Hence choose an x from e \

⋃n
i=1 fi and we

have ux = x.
We claim that (iii) is equivalent to the following statement:
For every v ∈ C0, every u ∈ idv C∗ idv and every finite subset e, f1, . . . , fn ∈ J with e, fi ⊊ vC for all

i = 1, . . . ,n and
⋃n

i=1 fi ⊊ e,
uz =∗ z for all z ∈ e\

⋃n
i=1 fi implies that there is an x ∈ e\

⋃n
i=1 fi with ux = x.

We just sketch the idea of the verifying process. It is straightforward to see that the above statement
implies (iii). For the reverse direction, take a y ∈ e\

⋃n
i=1 fi, and v ∈ d(y). Then by assumption uy =∗ y

and we have uy= yũ for some v∈ vC∗v. Take f ′i = yC∩ fi. Then
⋃n

i=1 f ′i ⊊ vC implies that
⋃n

i=1 σ−1
y f ′i ⊊

vC. For every x̃ ∈ vC\
⋃n

i=1 σ−1
y f ′i , yũx̃ = uyx̃ ∈ yx̃C∗ so that ũx̃ ∈ x̃C∗. Hence (iii) implies that there is

an x ∈ vC\
⋃n

i=1 σ−1
y fi with ũx = x. Thus yx = e\

⋃n
i=1 fi and u(yx) = yũx = yx.

So we can assume the new condition above to prove (ii). Let u ∈ C∗,0. By assumption we can take a
compact open basis element Ω(e; f1, . . . , fn) such that [u,Ω(e; f1, . . . , fn)]⊆ Iso(C∗,0⋉Ω). Then we have
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that uz ∈ zC∗ hence uz =∗ z for all e \
⋃n

i=1 fi. Hence the new statement given above implies that there
exists an x ∈ e \

⋃n
i=1 fi with ux = x. Then χx ∈ Ω(e; f1, . . . , fn) because x ∈ e \

⋃n
i=1 fi. Furthermore,

ux = x implies that [u,χx] = χx ∈Ω. Hence C∗,0 ⋉Ω is topologically free.

The idea to obtain the following analogous statement for Il⋉̄Ω is similar. We record it without proof.

Theorem 3.15 (Characterization of topological freeness of Il⋉̄Ω, Li [5], Theorem 4.5). Let C∗,0 be
defined as in the previous theorem. Define C∗,0⋉̄Ω := {[u,χ] ∈ Il⋉̄Ω : u ∈C∗,0}. Then the following are
equivalent:

(i) Il⋉̄Ω is effective;

(ii) C∗,0⋉̄Ω is effective;

(iii) For every v ∈ C0, every u ∈ idv C∗ idv and every finite subset { f1, . . . , fn} ⊆ J with fi ⊊ vC for all
i = 1, . . . ,n,

uz =∗ z for all z ∈ vC\
⋃n

i=1 fi implies that ux = x for all x ∈ vC\
⋃n

i=1 fi.

We can see that Theorem 3.15 (iii) implies Theorem 3.14 (iii), so we immediately have the following
implication.

Corollary 3.16. The effectiveness of Il⋉̄Ω implies the topological freeness of Il ⋉Ω.

23



♪ 4

Garside theory

In this section, we recall necessary parts of the Garside theory for our discussion following Dehornoy
et al. [2]. However, we note that the directions of arrows are opposite to those in [2].

4.1 Paths

Definition 4.1 (C-path). Let C be a small category.
- A finite C-path is a finite sequence (g1, . . . ,gp) such that t(gk+1) = d(gk) for all k = 1,2, . . . , p−1.
- An infinite C-path is an infinite sequence (g1,g2, . . .) such that t(gk+1) = d(gk) for all k ∈ N+.
- In finite cases, we say (g1, . . .gp) is of length p. In infinite cases, we say that the length of the

C-path is ∞.
- For every object x ∈ C0, we introduce an empty path ()x or written as εx whose source and target

are x and whose length is required to be zero.

If the small category is clear in the context, we often just call a C-path simply a path.
The following is a visualization of a finite path.

• • •

• • •

gp g1gp−1 g2

Definition 4.2 (Concatenation). If ( f1, . . . , fp) and (g1, . . . ,gq) are two C-paths and t( f1) = d(gq), we
define the concatenation (g1, . . . ,gq)|( f1, . . . , fp) of these two paths as a new path

(g1, . . . ,gq)|( f1, . . . , fp) := (g1, . . . ,gq, f1, . . . , fp).

Moreover, when x = d(gq) and y = t(g1), we put (g1, . . . ,gq)|()x = (g1, . . . ,gq) = ()y|(g1, . . . ,gq). Also
for each x ∈ C we put ()x|()x = ()x.

Remark 4.3. We see from the definition that adjacent elements in a path can be composed. To avoid
confusion, we keep writing g1| · · · |gp to refer to a finite path (g1, . . . ,gp), or g1|g2| · · · to refer to an
infinite path and write g1 · · ·gp to refer to the product of these elements in the path (g1, . . . ,gp). In some
literature, for example, Li [5] (Definition 6.4), the author does not tell the difference between a product
and a (finite) path.
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4.2 Greediness

Definition 4.4 (S-greedy). Let S be a subfamily of a left cancellative small category C. A length-two
path g1|g2 is said to be S-greedy if each relation s⪯ f g1g2 with s ∈ S and f ∈ C implies that s⪯ f g1.

A path g1| · · · |gp is said to be S-greedy if gi|gi+1 is S-greedy for each i = 1,2, . . . , p−1.

By definition, a path of length zero or one is always S-greedy.
Two simple observations are useful.

Proposition 4.5. Let S be a subfamily of a left cancellative small category C.

(i) If two length-two paths g1|g2 and g2|g3 are both S-greedy, then so is the concatenated path
g1|g2|g3.

(ii) If g1| · · · |gp is S-greedy then for every 1 ≤ q < r ≤ p, gq| · · · |gr is S-greedy. This in turn implies
that gq · · ·gr−1|gr is S-greedy.

Proof. The first statement is straightforward and let’s prove the second statement. By definition, the
length-two paths gq|gq+1,..., gr−1|gr are all S-greedy, so gq| · · · |gr is S-greedy by (i). The latter half of
the second statement is because s⪯ f gq · · ·gr = ( f gq · · ·gr−2)gr−1gr implies that s⪯ f gq · · ·gr−1.

The general statement is given as follows.

Theorem 4.6 (Grouping entries). Let C be a left cancellative small category and S ⊆ C be a subfamily.
If a finite path g1| · · · |gp is S-greedy, then so is every path obtained from g1| · · · |gp by replacing adjacent
entries with their product.

Proof. We first claim that if g1| · · · |gp is S-greedy and s ∈ S satisfies s⪯ f g1 · · ·gp, then for each q with
1 ≤ q ≤ p we have s ⪯ f g1 · · ·gq. This is an argument for decreasing induction. For q = p, this is just
the initial assumption. For q < p, the induction hypothesis givs that s ⪯ f g1 · · ·gq ⪯ f g1 · · ·gqgq+1 =
( f g1 · · ·gq−1)gqgq+1. Since g1| · · · |gp is S-greedy, gq|gq+1 is greedy by definition. This implies that
s⪯ ( f g1 · · ·gq−1)gq = f g1 · · ·gq−1gq and the induction goes on to finish proving the claim.

Suppose that g1| · · · |gp is S-greedy and 1≤ q < r≤ p. Applying the above claim to the S-greedy path
gq−1| · · · |gr shows that every element s∈ S with s⪯ f gq−1(gq · · ·gr) left divides f gq−1 which implies that
gq−1|gq · · ·gr is S-greedy. Applying the above claim to the S-greedy path gq| · · · |gr+1 shows that every
element s ∈ S with s ⪯ f (gq · · ·gr)gr+1 left divides f (gq · · ·gr), which implies that gq · · ·gr|gr+1 is S-
greedy. Hence g1| · · · |gq−1|gq · · ·gr|gr+1| · · · |gp is S-greedy.

The following corollary from the above results can be used as another definition of the greediness of
a path. It means that to determine whether a path is greedy, we do not need to use the auxiliary arbitrary
element f ∈ C in Definition 4.4.

Corollary 4.7 (An equivalent definition for greediness). Let C be a left cancellative small category and
S⊆C be a subfamily. A length-two path g1|g2 is S-greedy if and only if each relation s⪯ g1g2 with s ∈ S
implies that s⪯ g1.

Moreover, a path g1| · · · |gp is S-greedy if and only if each relation s⪯ gq · · ·gr with s ∈ S implies that
s⪯ gq for every 1≤ q < r ≤ p.

Proof. Suppose g1|g2 is S-greedy then we take f = idt(g1) in Definition 4.4 and obtain the “only if”
statement. Suppose conversely that each relation s ⪯ g1g2 with s ∈ S implies that s ⪯ g1. Then we
replace g1 by f g1 and obtain the “if” statement.

In general, if the path g1| · · · |gp is S-greedy then so is gq| · · · |gr by Proposition 4.5 (ii) and hence
gq|gq+1 · · ·gr by Theorem 4.6. Thus each relation s ⪯ gq · · ·gr with s ∈ S implies that s ⪯ gq for every
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1 ≤ q < r ≤ p by the first statement. On the other hand, suppose each relation s ⪯ gq · · ·gr with s ∈ S
implies that s ⪯ gq. Then we take q = 1 and r = p and replace g1 by f g1, and we obtain the greediness
of g1| · · · |gp.

Proposition 4.8 (Sm-greedy). Let S be a subfamily of a left cancellative small category C and g1| · · · |gp

is S-greedy. Then for every m with 1 ≤ m ≤ p the (length two) path g1 · · ·gm|gm+1 · · ·gp is Sm-greedy.
That is, each relation s⪯ f g1 · · ·gp with s ∈ Sm implies s⪯ f g1 · · ·gm.

Proof. For s ∈ Sm, write s = s1 · · ·sm with each si ∈ S, i = 1,2, . . . ,m. Suppose now we have a relation
s ⪯ f g1 · · ·gp with s = s1 · · ·sm ∈ Sm. We take a t ∈ C such that s1 · · ·smt = f g1 · · ·gp. Then first we
have s1 ⪯ s ⪯ f g1 · · ·gp, and by the assumption that g1| · · · |gp is S-greedy, we have s1 ⪯ f g1, so that
s1h1 = f g1 for some h1 ∈ C. For the sake of convenience, we let h0 = f . By left cancellativity of C,
s2 · · ·smt = h1g2 · · ·gp. Now we have the following sequence of statements from greediness:

s2 · · ·smt = h1g2 · · ·gp⇒ s2 ⪯ h1g2 say, s2h2 = h1g2,

s3 · · ·smt = h2g3 · · ·gp⇒ s3 ⪯ h2g3 say, s3h3 = h2g3,

...

smt = hm−1gm · · ·gp⇒ sm ⪯ hm−1hm say, smhm = hm−1gm.

Thus, sm−1sm = sm−1hmgm = hm−2gm−1gm, and inductively,

shm = s1 · · ·smhm = f g1 · · ·gm.

Therefore, s⪯ f g1 · · ·gm finishing the proof.

Lemma 4.9. Let C be a left cancellative small category and let S be a subfamily of C. Then a finite
C-path is S-greedy of and only if it is S♯-greedy, if and only if C∗S♯-greedy.

Proof. Observe that if a C-path is S-greedy then it is S′-greedy for every S′ ⊆ S. Since S ⊆ S♯ ⊆ C∗S♯,
being C∗S♯-greedy implies being S♯-greedy and in turn implies being S-greedy.

Conversely, suppose that the path g1| · · · |gp is S-greedy, and let s ∈ C∗S♯, say ε1s′ε2 with ε1,ε2 ∈ C∗
and s′ ∈ S. Given s ⪯ f gigi+1, then we have s′ = (ε−1

1 f )gigi+1. As s ∈ S and gi|gi+1 is S-greedy, this
implies that s′ ⪯ (ε−1

1 f )gi, say ε
−1
1 f gi = s′ f ′ for some f ′ ∈ C. We deduce that s(ε−1

2 f ′) = ε1s′ε−1
2 f ′ =

ε1ε ′1 f gi, whence s⪯ f gi so gi|gi+1 is C∗S♯-greedy.

4.3 Normal decomposition

Definition 4.10 (The family S♯, closeness under =∗). Let S be a subfamily of a left cancellative small
category C. We define the family S♯ as

S♯ := SC∗∪C∗.

We say that S is closed under =∗ or =∗-closed if for every g′ ∈ C∗, g′ =∗ g for some g ∈ S implies that
g′ ∈ S.

We call S♯ the closure of the family S with respect to the right-multiplication by invertible elements.

Some remarks come as follows:
- We have that (S♯)♯ = S♯. This is one of the reasons why S♯ is called the closure of S.
- C∗ = (idC)

♯, where idC := {idv : v ∈ C0}= C0.
- If C has no nontrivial invertible elements (i.e.,C∗ = idC) then the relation =∗ is an equality, so every

subfamily S of C is =∗-closed and S♯ is precisely S∪ idC.

Lemma 4.11. Let C be a left cancellative small category.
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(i) For every subfamily S of C, the closure S♯ is the smallest subfamily with respect to the inclusion of
sets that is =∗-closed and includes S∪C0.

(ii) The intersection of arbitrarily many =∗-closed subfamily of C is =∗-closed.

Lemma 4.11 (i) is another reason why S♯ is called the closure of S.

Proof. Observe that S is =∗-closed if and only if SC∗ ⊆ S, hence if and only if SC∗ = S because S⊆ SC∗
trivially.

S♯C = (SC∗∪C∗)C∗

= SC∗C∗∪C∗C∗

= SC∗∪C∗ = S♯,

where we have obviously C∗C∗ = C∗.
It is straightforward that S♯ includes S∪C0. If there is another family S′ that is =∗-closed and includes

S∪C0 then S′ contains (S∪C0)C∗ = SC∗∪C∗ = S♯.
For the second item, {Sα}α∈A be a subfamilies of C which are =∗-closed. Then SαC∗ = Sα for all

α ∈ A. Taking the intersection on both sides yields the desired result.

Definition 4.12 (S-normal, strict normal). Let C be a left cancellative small category and S is a subfamily
of C. A finite or infinite C-path is S-normal if it is S-greedy and every entry lies in S♯.

An S-normal path is strict if no entry is invertible and when it is finite, all entries except possibly the
last one lie in S.

Definition 4.13 (S-normal decomposition). We say that a path s1| · · · |sp is an S-normal decomposition
(or a strict S-normal decomposition) for an element g if s1| · · · |sp is an S-normal path (or a strict S-normal
path) and g = s1 · · ·sp.

Proposition 4.14. Let C be a left cancellative small category and S is a subfamily of C. A C-path is
S-normal if and only if it is S♯-normal.

Proof. Let s1| · · · |sp be an S-normal path. By Lemma 4.9 s1| · · · |sp is greedy and each si, i = 1,2, . . . , p, is
an element of S♯, which is the same as (S♯)♯ by the remark given below Definition 4.10. Hence s1| · · · |sp

is S♯-normal.
Conversely, assume that s1| · · · |sp is S♯-normal. Then it is S♯-greedy and hence S-greedy, again by

Lemma 4.9, with each si,(i = 1,2, . . . , p) lying in (S♯)♯ = S♯. Hence s1| · · · |sp is S-normal.

Definition 4.15 (Deformation by invertible elements). Let C be a left cancellative small category. A
C-path s1| · · · | fp is said to be a deformation by invertible elements or C∗-deformation of another C-path
t1| · · · |tq if there exist ε0, . . . ,εm,m = max(p,q), such that ε0 and εm are identity elements and εi−1ti = siεi

holds for 1≤ i≤ m, where for p ̸= q the shorter path is expanded by identity elements.

The following commutative diagram visualizes Definition 4.15 in the case q≥ p.

x • • • • • • y

x • • • • • • y

gq

εq=idx

gp+1

εp

gp g2

ε1

g1

ε0=idy

id id fp

ε−1
p

f2 f1

ε
−1
1

The following theorem with proof omitted, gives the uniqueness of a normal decomposition up to
deformation by invertible elements.
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Theorem 4.16 (Normal uniqueness, Dehornoy et al. [2], Chapter III, Proposition 1.25). Let S be a
subfamily of a left cancellative small category C. Then any two S-normal decompositions of an element
of C are a deformation by invertible elements of one another.

Definition 4.17 (∼-transverse). Suppose ∼ is an equivalence relation on a set S. A subset S′ of S is said
to be ∼-transverse if distinct element of S′ are not ∼-equivalent.

Definition 4.18 (∼-selector). Assumptions as above. A subset S′′ is said to be a∼-selector in S′ if S′′ ⊆ S
and contains exactly one element in each ∼-equivalence class intersecting S′.

By definition, we can see that a ∼-selector is ∼-transverse. If we accept the Axiom of Choice,
selectors always exist. Also, if C contains no nontrivial invertible element, then every subfamily of C is
=∗-transverse.

Corollary 4.19. Let C be a left cancellative small category and S is a subfamily of C that is =∗-
transverse. Then every non-invertible element of C admits at most one strict S-normal decomposition.

Proof. Assume that s1| · · · |sp and t1| · · · |tq are strict S-normal decompositions of some element g. We
first show p = q. By assumption, none of si and ti is invertible and Theorem 4.16 gives the equality of p
and q. Then an induction on i < p with Theorem 4.16 gives si =

∗ ti so si = ti because S is =∗-transverse
and each si, ti ∈ S. Finally s1 · · ·sp−1sp = t1 · · · tp−1tp whence sp = tp by left cancellating s1 · · ·sp−1.

Corollary 4.20. Let S be a subfamily of a left cancellative small category C, then for every element g of
C the number of non-invertible elements in an S-normal decomposition of g (if any) does not depend on
the choice of decomposition.

Proof. Let s1| · · · |sp and t1| · · · |tq be two S-normal decomposition of a given element g. Theorem 4.16
implies that one is a deformation by invertible elements of the other. This in turn implies that si is
invertible if and only if ti is.

From Corollary 4.20, the number of non-invertible elements in a normal decomposition of g ∈ C
depends only on g itself. Hence we can record this number as its net length.

Definition 4.21 (Net S-length). Let S be a subfamily of a left cancellative small category C and g is an
element of C that admits at least one S-normal decomposition. The (unique) number of non-invertible
elements in (all) S-normal decompositions of g is called the net S-length of g, denoted by ∥g∥S.

Remark 4.22. In Dehornoy et al. [2], the term “net S-length” is simply called S-length. Here use the
term “net” to emphasize that we ignore all the invertible elements in a path and count the number of
non-invertible elements, and avoid confusion with the length given in Definition 4.1.

Definition 4.23 (S-head). Let S-be a subfamily of a left cancellative small category C. Given a ∈ C, an
element s ∈ S is an S-head of a if s is a greatest left divisor of a is S.

In the case that S is =∗-transverse, the S-head is unique if it exists. In this case, the S-head of an
element a ∈ C is denoted as HS(a). We may also omit S and write H(a) instead when it is clear in the
context.
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4.4 Garside families

Definition 4.24 (Garside family). Let C be a left cancellative small category. A subfamily G of C is
called a Garside family if every element of C admits at least one G-normal decomposition.

A trivial example of a Garside family is the small category C itself. Thus we are focusing on non-
trivial Garside families of C.

Proposition 4.25 (Invariance under closure). Let C be a left cancellative small category. The subfamily
G is a Garside family of C if and only if G♯ is.

Proof. Suppose that G is a Garside family of C. Then every element of C admits a G-normal decom-
position. By Proposition 4.14, this is also an G♯-normal decomposition. Hence S♯ is a Garside family.
Conversely, suppose that G♯ is a Garside family of C. Then every element of C admits a G♯-normal
decomposition and again by Proposition 4.14 this is G-normal. Hence G is a Garside family.

Corollary 4.26. Let C be a left cancellative small category.

(i) If G and G′ are subfamilies of C and satisfy G♯ = (G′)♯, then G is a Garside family if and only if
G′ is.

(ii) If G′ is a =∗-selector in G, then G is a Garside family if and only if G′ \ idC is.

Proof. (i) directly follows from Proposition 4.25. For (ii) observe that G′ being an =∗-selector in G
implies that G♯ = (G′)♯ = (G′ \ idC)

♯ and the desired result follows by applying (i).

We record a lemma from about the existence of a G-head when G is a Garside family without proof,
which will be used later.

Lemma 4.27 (Dehornoy et al. [2] Chapter IV, Proposition 1.24). If G is a Garside family of a left
cancellative small category C, then every non-invertible element a admits a G-head.
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♪ 5

Main results

Let C be a left cancellative small category and S be a subfamily of C which generates C. Let w= s1|s2| · · ·
be an infinite C-path with every si,(i ∈ N+) in S. In the case that every si lies in S, we also say that w is
an infinite S-path, and we should note that an S-normal path is an S♯-path. We write

w≤n := s1| · · · |sn for the finite path formed by the first n elements of the infinite path w,

wn := s1 · · ·sn for the product of elements of w≤n,

w=n := sn for the n-th element of w, and

w>n := sn+1|sn+2| · · · for the path obtained by deleting first n-elements from w.

Also we define Ω∞ := Ω\{χx : x ∈ C}.

Definition 5.1 (Character from an infinite path). Let S be a subfamily of a left cancellative small category
C which generates C. Given a S-path w, we define a map χw : J→{0,1} by

χw(e) =

{
1, if wn ∈ e for some n ∈ N+,

0, otherwise.

Proposition 5.2. χw ∈Ω for every infinite S-path w defined above.

This is straightforward from the corresponding definitions.

Lemma 5.3. Let C be a finitely aligned left cancellative small category which is also countable. Let S
be a subfamily of C generating C. Then every χ ∈Ω∞ is of the form χw for some infinite S-path.

Proof. Let χ ∈ Ω∞ = Ω \ {χx : x ∈ C} and recall that F χ
p := {xC : x ∈ C with χ(xC) = 1}. Since C

is assumed to be countable, we can write F χ
p = {x1C,x2C, . . .}. Now let w(1) = x1 so that χ(w(1)C) =

1. We now carry out an induction showing that for each n ∈ N+, there is an element w(n) which is a
common right multiple of x1, . . . ,xn and satisfies χ(w(n)C) = 1. Suppose that there is a w(n−1) such
that χ(w(n−1)C) = 1. Since χ(w(n−1)C∩ xnC) = χ(w(n−1)C)χ(xnC) = 1, then by Lemma 1.55, there
exists a minimal common right multiple of w(n−1) and xn, say, w(n), such that χ(w(n)C) = 1. Otherwise
χ(w(n−1)C∩ xnC) would be 0. Now since χ /∈ {χx : x ∈ C} we may assume that w(n) is not invertible
for all n ∈ N+. Thus we can write w(n) = s(n)1 · · ·s

(n)
ln as an S-path for each n ∈ N+, where ln is an natural

number depending on w(n). Now we define a new S-path

w := s(1)1 | · · · |s
(1)
ln |s

(2)
1 | · · · |s

(2)
l2 |s

(3)
1 | · · · |s

(3)
l3 | · · ·
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and we claim that χ is indeed χw. We make use of Lemma 3.9 (ii) to show this. We see that χw(xC) = 1
if and only if wn ∈ xC for some n ∈ N+ if and only if wnC ⊆ xC (for this n by Proposition 1.42 (i)).
This holds again if and only if χ(xC) = 1 using Lemma 3.9 because χ(w(n)C) = 1 and w(n)C⊆ xnC give
χ(xnC) = 1 for all xnC ∈Fp.

Inspired by Lemma 2.14, we would like to see how s.χw behaves given s ∈ Il and an (infinite) S-path
w. For a given s ∈ Il , s.χw is defined if and only if χw(s−1s) = 1, if and only if there is an m ∈ N+ such
that wm ∈ dom(s).

Now let s.χw be defined. For an e∈ J, s.χw(e) = χw(s−1es) = 1 if and only if there is an n∈N+ such
that wn ∈ dom(es)= s−1(dom(e)∩ im(s)). This is equivalent to say that χs(wn)(e)= s.χwn(e)= 1 for some
n. Thus, s.χw = χs(wn) = s.χwn = s.χwn|w>n for this n. In particular, if an element c∈C satisfies that d(c)=
t(w1) = t(wn), then for every e such that σc.χw(e) = 1, we have 1 = σc.χw(e) = χσc(wn)(e) = χcwn(e),
where n ∈ N+ (and hence wn) depends on e. Thus 1 = χcwn = χcwn|w>n(e) = χc|w≤n|w>n(e) = χc|w(e) for
all e ∈ J such that σc.χw(e) = 1. This proves that σc.χw = χc|w for every nonempty normal path w and
every c ∈ C satisfying d(c) = t(w1).

Lemma 5.4. Let C be a finitely aligned left cancellative small category and let S be a subfamily of
C which generates C. Given c,d ∈ C with d(d) = d(c) and an infinite G-path w, then σcσ

−1
d .χw is

defined if and only if there is an n ∈ N+ such that d ⪯ wn. In this case, if we have dxn = wn, then
σcσ

−1
d .χw = χcxn|w>n .

Proof. σcσ
−1
d .χw is defined if and only if χw((σcσ

−1
d )−1(σcσ

−1
d )) = 1, if and only if there is an n ∈ N+

such that wn ∈ dom(σcσ
−1
d ) = σ−1

c (d(c)C∩d(d)C). However, in order to guarantee that σcσ
−1
d .χw is a

nonzero character, we need to require that d(c)C∩d(d)C ̸= ∅. This holds if and only if d(c) = d(d),
and hence dom(σcσ

−1
d ) = dC. That is to say, σcσ

−1
d .χw is defined if and only if there is an n ∈ N+ such

that wn ∈ dC, or equivalently, d ⪯ wn.
In this case, if we have dxn = wn, where xn depends on wn, then

σcσ
−1
d .χw = σcσ

−1
d .χwn = σcσ

−1
d .χdxn = σc.χxn = χcxn = χcxn|w>n .

Remark 5.5. Here we have corrected the typos arising from Li [5] Lemma 6.15 (iii) and its proof.

Definition 5.6 (Local finiteness, Local boundedness). Let C be a small category. A subfamily S of C is
said to be

• locally finite if vS is finite for all v ∈ C0;

• locally bounded if for every v ∈C0 there is no infinite sequence s1,s2, . . . in vS with s1 ≺ s2 ≺ ·· · .

A direct observation from the second item in Definition 5.6 is that if S ⊆ C is locally bounded, then
there is also no strictly increasing sequence in S itself.

Given two S-paths x = s1|s2| · · · and y = t1|t2| · · · we mean x = y by requiring si = ti for all indices i.
In the case of finite paths, we also require that their lengths are the same. Then we have the following
lemma:

Lemma 5.7. Let C be a finitely aligned countable left cancellative small category. Let G be a Garside
family of C which is =∗-transverse, locally bounded, and G∩C∗ =∅. Then every χ ∈Ω\{χv : v ∈C0}
is of the form χp for some G-normal path p. Moreover, for two normal paths p and q, χp = χq if and
only if p = q.
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Proof. Since Ω∞ = Ω\{χx : x ∈ C}, we write

Ω\{χv : v ∈ C0}= Ω∞∪{χx : x ∈ C\C0}.

This is a disjoint union. Since G is a Garside subfamily of C, every x is the product of elements in some
finite G-normal path, say, wx. Hence every χx with x ∈ C is of the form χwx . It remains to see the case
that χ ∈Ω∞.

By Lemma 5.3, every χ ∈ Ω∞ is of the form χw for some infinite path w = r1|r2| · · · . We proceed
to construct an (infinite) G-normal path p = s1|s2| · · · so that χ = χw = χp. By Lemma 4.27 and the
assumption that G is =∗-transverse, we can take s(n)1 to be the G-head of wn for every n ∈ N+. As
s(n)1 ⪯wn⪯wn+1 by construction, we must have s(n)1 ⪯ s(n+1)

1 . This gives an increasing sequence {s(n)1 }∞
n=1

with respect to ⪯. Since G is locally bounded, then from the remark after Definition 5.6 this increasing
sequence eventually terminates at some index N ∈ N+ and remains constant. We may assume that N is
minimal. Let s1 := s(N)

1 and call it H(w), the head of the infinite path w.
By construction, s1 = s(N)

1 ⪯ wN so we can write wN = s1d1 for some d1 ∈ C. Define temporary
notations s−1

1 wN := d1 (which is well defined because C is left cancellative) and s−1
1 w as the C-path

d1|w>N and let s2 := H(s−1
1 w). This is well defined because when looking at the construction of s2,

each G-head s(n)2 of the product d1rN+1 · · ·rn exists (by Lemma 4.27), is increasing with respect to n, and
terminates at s2.

Similarly we can inductively define for each m ∈ N+ the path s−1
m−1s−1

m−2 · · ·s
−1
1 w, and take the head

sm = H(s−1
m−1s−1

m−2 · · ·s
−1
1 w). Let p be the path obtained by concatenating each sn,n ∈ N+, p = s1|s2| · · · .

By construction, p a is a well-defined G-normal path. We further claim that χ = χw is indeed this χp.
First, we show that for every n ∈ N+, there is an integer N(n) (depending on n) large enough such that
pn ⪯ wN(n). We do this by induction. This is true by construction for n = 1. Suppose pn ⪯ wN(n). Then
sn+1 = H(p−1

n w) = H(p−1
n wN(n)|w>N(n)) meaning that there is an integer N(n+1) (depending on n+1)

large enough such that sn+1⪯ p−1
n wN(n+1) as desired. Note that the index N(n) is no less than n according

to this process so that wn ⪯ wN(n). Next, we prove the claim with the help of Lemma 3.9 (ii).
Given x ∈ C with χp(xC) = 1, then by definition, pn ∈ xC for some n, or equivalently, x ⪯ pn, and

hence x ⪯ pn ⪯ wN(n), which implies that wN(n) ∈ xC and hence χw(xC) = 1. Conversely, given x ∈ C
with χw(xC) = 1, we show that χp(xC) = 1. By definition x⪯ wn for some n. From the above induction
argument, we have that pn ⪯ wN(n) for each n ∈ N+ with an N(n) ≥ n depending on n. Since G is a
Garside family of C which is also =∗-transverse, then the G-normal decomposition of wN(n) exists and
unique by Corollary 4.20, so the G-normal decomposition of wN(n) starts with the path p≤n, and we can
write wn ⪯ wN(n) ⪯ pngn1 · · ·gnm for some G♯-path (actually G-normal) gn1 | · · · |gnm . Now Proposition
4.8 applied here gives that wn ⪯ pn. Therefore, x ⪯ wn ⪯ pn and pn ⊆ xC, which indeed implies that
χp(xC) = 1.

The uniqueness is easier. Let p= s1|s2| · · · and q= t1|t2| · · · be two G-normal paths such that χp = χq.
Then χq(s1C) = χp(s1C) = 1 and hence qn ∈ s1C for some n, or equivalently, s1 ⪯ qn. Since t1 is the
greatest left divisor of qn by the above construction, we have s1 ⪯ t1. By interchanging the role of p
and q we also have that t1 ⪯ s1 and hence s1 = t1 by transversality of G. Now applying this argument to
the path s−1 p = s2|s3| · · · = p>1 and t−1q = t2|t3| · · · = q>1. Using Lemma 2.14, we obtain that χs−1

1 p =

σ−1
s1

.χp = σ
−1
t1 .χq = χt−1

1 q so that s2 = t2 and then si = ti for each i ∈ N+ follows inductively.

Let C be a finitely aligned left cancellative small category and G be a Garside family of C which
is =∗-transverse and G∩C∗ = ∅. Denote by W the collection of all G-normal path. If C is countable
and G is locally bounded, Lemma 5.7 implies that there is a one to one correspondence W ⊔C0→Ω by
w 7→ χw,v 7→ χv.

Remark 5.8. The argument of Lemma 5.7 given in Li [5] did not specify for example what the element
s−1

1 wn and the path s−1
1 w are, which makes it hard to understand. From the context, we can see that these
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are formal notations, and we should bear in mind that s1,s2, . . . are not invertible because of the setting
G∩C∗ =∅.

Lemma 5.9. Let the G be a Garside family of C as defined above, and let W be the collection of G-
normal paths.

• Given a sequence {w(i)} in W and an element w ∈W , limi χw(i) = χw if and only if for all n ∈N+,
wn is the greatest element with repect to⪯ among the set {v∈C : ∥v∥G≤ n,v⪯w(i)

n for all but finitely many i},
in the sense that wn is in the set and every (other) element v in that set is a left divisor of wn.

• Suppose further that G is locally finite. Then the singleton {χx} is open for every x ∈ C, and thus
Ω∞ is closed. Given a sequence {w(i)} in W and an element w ∈W , limi χw(i) = χw if and only if
for all n ∈ N+, wn = w(i)

n for all but finitely many i.

Remark 5.10. In Li [5] the term “greatest element” is called “maximal element” instead, but from the
context, it is better referred to as the greatest element.

Proof. We will do the proof with the help of Lemma 3.9 (ii). Let v be an element of C with ∥v∥G ≤ n.
Then limi χw(i)(vC) = 1 if and only if w(i)

n ∈ vC for all but finitely many i, if and only if v ⪯ w(i)
n for

all but finitely many i. This is because the first ∥v∥G-many (which is no more than n) elements in the
normal decomposition of w(i)

n is the same as that of v by uniqueness of normal decompositions from
transversality of G (Corollary 4.19). On the other hand, for the same reason, χw(vC) = 1 if and only if
wn ∈ vC, if and only if v⪯wn. Therefore limi χw(i) = χw if and only if v⪯w(i)

n implying v⪯wn for v ∈C
with ∥v∥G ≤ n.

Suppose further that G is locally finite. Then {χx} = Ω(xC;{yC : y ∈ d(x)G}) is an element
of a basis of the topology for Ω, which is open, and hence Ω∞ = Ω\

⋃
x∈C{χx} is closed. By the

first item we show that wn is the greatest with respect to ⪯ among the set {v ∈ C : ∥v∥G ≤ n,v ⪯
w(i)

n for all but finitely many i} if and only if wn = w(i)
n for all but finitely many i. By deleting those

finite elements we may assume that wn ⪯ w(i)
n for all i. If we do not have wn = w(i)

n for all but finitely
many i, then by passing to a subsequence, we may further assume that wn ≺ w(i)

n for all i. Now Gn is
locally finite because G is. Then by passing to a subsequence a second time, we may assume that the
sequence w(i)

n is a constant, say v. It follows that wn ≺ v and therefore χw(i) does not converge to χw.

Let G be a Garside family. For a sequence {s(i)} in G and an element s∈G∪C0, we write limi s(i) = s
if s is the greatest element with respect to⪯ among the set {r∈G∪C0 : r⪯ s(i) for all but finitely many i}
in the sense that s⪯ s(i) for all but finitely many i, and every element r left dividing s(i) is also a left divisor
of s.

Proposition 5.11. Let V be a subset of W ⊔C0.

(1) For a G-normal path w = s1|s2| · · · ∈ W , χw ∈ (Il ⋉Ω).{χv : v ∈ V } if and only if for all indices
j, there is a sequence {v(i)} in V such that for all i,

– there exists an ai ∈ C and mi ∈ N+ with ∥v(i)∥G < mi if v(i) ∈ V \C; or

– there exists an ai ∈ Cd(v(i)) if v(i) ∈ C;

such that if we set s(i)j := H(aiv
(i)
=mi) in the first case or s(i)j := H(ai) in the second case, then

limi s(i)j = s j.

(2) For w ∈ C0, χw ∈ (Il ⋉Ω).{χv : v ∈ V } if and only if w ∈ V or there exists a sequence {v(i)} in
V such that for all i,
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– there exists an ai ∈ C and mi ∈ N+ with ∥v(i)∥G < mi if v(i) ∈ V \C; or

– there exists an ai ∈ Cd(v(i)) if v(i) ∈ C;

such that if we set s(i) := H(aiv
(i)
=mi) in the first case or s(i) := H(ai) in the second case, then

limi s(i) = w.

Proof. We just prove the first statement and the argument for the second one is similar.
The “only if” part: For every i, write v(i) = r(i)1 |r

(i)
2 | · · · (finite or infinite normal path). Define ṽ(i) be

a unique normal path such that χṽ(i) := σaiσ
−1
r(i)1 ···r

(i)
mi−1

.χv(i) in the first case and χṽ(i) := σaiσ
−1
v(i)

.χṽ(i) in the

second case. The existence and uniqueness of ṽ(i) is guaranteed by Lemma 5.7. Then χṽ(i) ∈ (Il ⋉Ω).{χv :
v ∈ V } and the normal decomposition of ṽ(i) starts with s(i)j by the assumption that s(i)j := H(aiv

(i)
=mi) in

the first case or s(i)j := H(ai) in the second case, as well as transversality of G. Since Ω(t(s j)) is compact,
by passing to a subsequence, we may assume that limi χṽ(i) = χx for some unique normal path x, which
lies in (Il ⋉Ω).{χv : v ∈ V }. This means that χṽ(i) = χx for all but finitely many i in the sense of and
hence ṽ(i) = x for all but finitely many i by Lemma 5.7. Since limi s(i)j = s j, then s j ⪯ s(i)j and the
normal decomposition of ṽ(i) and hence x start with s j for all i. Take w( j) to be a normal path such
that χw( j) := σs1···s j−1 .χx = χs1|···|s j−1|x. The normal decomposition of w( j) starts with s1| · · · |s j. Since
w = s1|s2| · · · also starts with s1| · · · |s j, we conclude that lim j χw( j) = χw.

The “if” part: We can just discuss the case where j = 1. For general indices j the arguments are
the same. Assume that for each i we can find ci,di ∈ C with d(di) = d(ci) and v(i) ∈ V such that
limi σ

−1
di

σci .χv(i) = χw. Lemma 5.4 implies that σ
−1
di

σci .χv(i) = χ
ai|v(i)>Ni

for some ai ∈ C in the first case

or σ
−1
di

σci .χv(i) = χai in the second case, where Ni is an integer satisfying the conditions of Lemma

5.4. The normal decomposition of ai|v(i)>Ni
starts with s(i)1 = H(ai|v(i)>Ni

) in the first case and the normal

decomposition of ai starts with s(i)1 = H(ai) in the second case. Then limi σ
−1
di

σci .χv(i) = χw implies that

limi s(i)1 = s1.

Definition 5.12 (Admissible pair, H-invariance, max∞
⪯-closeness). Let C be a left cancellative small

category and G be a Garside family. Also let I be a subfamily of G and D be a subfamily of C0.

(i) The pair (I,D) is called admissible if for all t ∈ I, either there is a t ′ ∈ I such that t|t ′ is G-normal
or d(t) ∈ D.

(ii) (I,D) is called H-invariant if for all a ∈ C\C∗ and x ∈ I∪D with d(a) = t(x), H(ax) lies in I.

(iii) (I,D) is called max∞
⪯-closed if for every sequence {ti}i in I, if limi ti exists in G, then limi ti ∈ I∪D.

Lemma 5.7 implies that there is a bijective correspondence between subsets of Ω and subsets of
W ⊔C0: Given X ⊆Ω, the corresponding subset of W ⊔C0 is V (X) := {w ∈W ,v ∈ C0 : χw,χv ∈ X}.
Given V ⊆W ⊔C0, the corresponding subset of Ω is X(V ) := {χw,χv ∈Ω : w ∈ V ∩W ,v ∈ V ∩C0}.

Definition 5.13 (Subfamilies from subsets of Ω). Given X ⊆Ω, let V (X) = {w ∈W ,v ∈ C0 : χw,χv ∈
X}. We define

I(X) := {t ∈G : t = v=i for some v ∈ V (X)∩W and i ∈ N+}

and
D(X) := V (X)∩C0 = {v ∈ C0 : χv ∈ X}.

The following lemma, which is given with proof omitted, will be used in discussing invariance and
closeness properties.
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Lemma 5.14. Let G be a Garside family of a left cancellative small category C. Also suppose that G is
=∗-transverse and G∩C∗ =∅.

If g1| · · · |gn be a finite G-path, then H(g1 · · ·gn) = H(g1 · · ·H(gn−2H(gn−1gn)) · · ·).
If s1|s2| · · · be an infinite G-path which is also normal and let g1| · · · |gn be a finite G-path with

t(s1) = d(gn), then the normal decomposition of g1| · · · |gn|s1|s2| · · · starts with H(g1 · · ·gnr1).

Lemma 5.15. We have the following two necessary and sufficient statements:

(1) The pair (I,D) is admissible if and only if there is a subset X ⊆Ω such that I= I(X) and D=D(X).

(2) (I(X),D(X)) is H-invariant and max∞
⪯-closed if and only if X is (Il ⋉Ω)-invariant and closed.

Proof. (1) Suppose that the pair (I,D) is admissible. We take a set X whose elements will be deter-
mined later. Let t ∈ I. If there is a t ′ ∈ I such that t|t ′ is a G-normal path, then we require X to
be the set such that V (X)∩W contains (finite or infinite) G-normal paths in which two of the
adjacent elements are t and t ′, i.e., each element of V (X)∩W is a (finite or infinite) path v such
that there exists an i≤ ∥v∥G with v=i = t and v=i+1 = t ′. If d(t) ∈ D, then we require X to be the
set such that V (X)∩C0 = D. Then we obtain V (X) = (V (X)∩W )⊔ (V (X)∩C0) and hence
we obtain the desired X from the correspondence given before Definition 5.13. Conversely, let
X ⊆ Ω, we show that (I(X),D(X)) is admissible. Let t ∈ I(X). We can take a (finite or infinite)
path v ∈ V (X)∩W such that t = v=i. If ∥v∥G ≥ i+1 we take t ′ = v=i+1 Then t|t ′ is a normal path.
If ∥v∥G = i, then d(t) ∈ D(X).

(2) Suppose that (I(X),D(X)) is H-invariant and max∞
⪯-closed. Then the “if” conditions in Proposition

5.11 are satisfied. It implies directly that for every nonempty G-normal path w ∈ W and every
object w ∈ C0, χw,χw ∈ (Il ⋉Ω).{χv : v ∈ V (X)} so that X ⊆
(Il ⋉Ω).{χv : v ∈ V (X)}. Moreover, the max∞

⪯-closeness condition implies that all the limit points
of (Il ⋉Ω).{χv : v ∈ V (X)} lie in X , and equivalently, its closure is contained in X . Therefore
X = (Il ⋉Ω).{χv : v ∈ V (X)} and is (Il ⋉Ω)-invariant and closed. Conversely suppose that X is
(Il ⋉Ω)-invariant and closed. Let V (X) be the corresponding subfamily of W ⊔C0. Then because
of (Il ⋉Ω)-invariance of X , the pair (I(X),D(X)) is H-invariant by Lemma 5.14. By closeness of
X , the pair (I(X),D(X)) is max∞

⪯-closed because of the compactness of Ω(vC) for every v ∈ C0

implying that none of the limit points will go outside and Proposition 5.11 concludes the proof.

Let I be a subfamily of G and D be a subfamily of C0. We can always find a smallest H-invariant
and max∞

⪯-closed pair (I,D) with respect to inclusion of sets, such that I ⊆ I and D ⊆ D. This is done
by adjoining all the elements of the form H(ax) where a ∈ C \C0 and x ∈ I∪D with d(a) = t(x) and
all the limit points limi ti of sequences {ti} in I. We can also find a biggest admissible pair (Ǐ, Ď) with
respect to the inclusion of sets, such that Ǐ⊆ I and Ď⊆ D. This is done by deleting elements t for which
there exists no t ′ ∈ I such that tt ′ is G-normal and for which d(t) ∈ D. We write (I,D)⊆ (I,D) to mean
that I⊆ I and D⊆ D. Also we write (I,D) = (I′,D′) to mean that I = I′ and D = D′. Thus we have the
following corollary.

Corollary 5.16. • That the pair (I,D) is admissible implies that (I,D) is also admissible.

• That the pair (I,D) is H-invariant and max∞
⪯-closed implies that (Ǐ, Ď) is also H-invariant and

max∞
⪯-closed.

Proof. We make use of Lemma 5.15.
For the first item, there exists a subset X ⊆Ω such that I = I(X) and D = D(X). Then by Proposition

5.11 with V = V (X) we obtain that (I,D) is actually the pair
(I((Il ⋉Ω).{χv : v ∈ V (X)}),D((Il ⋉Ω).{χv : v ∈ V (X)})) and hence admissible again by Lemma 5.15.
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For the second item, since the pair (Ǐ, Ď) is admissible by construction, then (Ǐ, Ď) is admissible
by the first item. Since (Ǐ, Ď) is H-invariant and max∞

⪯-closed, we must have Ǐ ⊆ I and Ď ⊆ D. By

maximality of (Ǐ, Ď) we also have (Ǐ, Ď) ⊆ (Ǐ, Ď). Hence they are equal, so (Ǐ, Ď) is H-invariant and
max∞

⪯-closed.

Definition 5.17. Let I be a subfamily of G and D be a subfamily of C0. Define

X(I,D) := {χv : v=i ∈ I,∀i ∈ N+}∪{χv : v ∈ D}.

Theorem 5.18 (Main theorem). There is an inclusion preserving one-to-one correspondence:

{(Il ⋉Ω)-invariant closed subspaces of Ω} −→
{

admissible, H-invariant max∞
⪯-closed pairs

}
X 7−→ (I(X),D(X))

X(I,D)←−[ (I,D)

with I⊆G and D⊆ C0.

Proof. Given an (Il ⋉Ω)-invariant closed X ⊆Ω, then Lemma 5.15 implies that the pair (I(X),D(X)) is
admissible, H-invariant and max∞

⪯-closed.
Given an admissible, H-invariant and max∞

⪯-closed pair (I,D), then Lemma 5.15 implies that there
is a subset Y ⊆Ω such that (I,D) = (I(Y ),D(Y )). Since the pair is futher H-invariant and max∞

⪯-closed,
then Y is (Il ⋉Ω)-invariant and closed. It remains to check that X(I(Y ),D(Y )) is indeed Y . By definition
we clearly have Y ⊆ X(I(Y ),D(Y )). Let χv be an element in X(I(Y ),D(Y )). If v = v∈C0, then χv ∈Y is
straightforward. If v = w ∈W , then for all i ∈N+ with i≤ ∥v∥G, there is a w′ ∈W such that χw′ ∈Y and
w=i = w′=i. Then Proposition 5.11 with the assumption that Y is (Il ⋉Ω)-invariant and closed implies
that χw ∈ Y , giving the other direction of inclusion.

The above argument also gives that X(I(X),D(X)) = X . The identity that
(I(X(I,D)),D(X(I,D))) = (I,D) is easily seen, as for some Il ⋉Ω-invariant and closed subspace Y of Ω,

(I,D) = (I(Y ),D(Y )) 7→ Y 7→ (I(Y ),D(Y )) = (I,D)

by using the above argument and Lemma 5.15.
Finally, the inclusion preserving property is clear to verify.

Corollary 5.19. Suppose further that the Garside family G is locally finite. Then the maps given in
Theorem 5.18 establish an inclusion preserving one-to-one correspondence between (Il ⋉Ω)-invariant,
closed subspaces of Ω and admissible H-invariant pairs contained in (G,C0).

The difference in statements between Corollary 5.19 and Theorem 5.18 is that we do not need to care
about max∞

⪯-closeness. This is because under the assumption that G is locally finite, every pair (I,D) is
automatically max∞

⪯-closed.
Combining Theorems 3.11, 5.18, and Corollary 5.19, we finally come to the following conclusion.

Theorem 5.20 (Li [5], Theorem B). Let C be a finitely aligned countable left cancellative small category
and G is a Garside family of C which is =∗-transverse, locally bounded and G∩C∗ =∅. Then we have
the following:

• The transformation groupoid Il ⋉Ω is a groupoid model for the left reduced C*-algebra C∗
λ
(C).

• There is an inclusion preserving one-to-one correspondence between Il ⋉Ω-invariant closed sub-
spaces of Ω and admissible, H-invariant max∞

⪯-closed pairs (I,D) with I⊆G and D⊆ C0.

• If further G is locally finite, then the max∞
⪯-closeness condition can be removed.
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♪ 6

Example: Higher-rank graphs

In this section, we discuss an application of the Garside theory to higher-rank graphs. Let’s recall the
definition and some properties of directed graphs and higher-rank graphs, roughly following Raeburn
et al. [7].

Definition 6.1 (Directed graph, Path, Concatenation). • A directed graph E = (E0,E1,r,s) consists
of a countable family of vertices E0 and a countable family of edges E1 together with the range
map r : E1→ E0 and the source map s : E1→ E0.

• A (finite) path in E is a (finite) sequence g = g1| · · · |gn with each gi ∈ E1 and r(gi+1) = s(gi) for all
i = 1,2, . . . ,n−1. We define the source and range of the path g by s(g) := s(gn) and r(g) := r(g1).

• Let f = f1| · · · | fm and g = g1| · · · |gn be two finite paths with s(gn) = r( f1), then the concatenation
of f1| · · · | fm by g1| · · · |gn is given by the finite path g1| · · · |gn| f1| · · · | fm.

Let E• be the set of all finite paths in E. If a finite path contains n elements in E1, we say that the
path is of length n. This defines a length function l : E•→ N, and the length function is additive for the
concatenation of paths, in the sense that the length of the concatenation of two paths is the sum of their
lengths.

The set of all finite paths E• becomes a small category. Objects are vertices E0, morphisms are
paths E• and E1 can be regarded as a subset of E•. Compositions are given by concatenations of paths.
Moreover, the length function l : E•→N satisfies the unique factorization property: for every path p∈E•

and m,n∈N with l(p) = n+m, there are unique paths f ,g∈ E• with l(g) = n, l( f ) = m and s(g) = r( f ),
such that p = g| f .

Recall that for any nonnegative integer k, the set of k-tuples of nonnegative integers Nk is regarded as
a monoid with the implicit object. The morphisms of Nk are nonnegative numbers, and the composition
is given by the componentwise addition of numbers, which is also commutative. Let v,w ∈ N, then by
definition of left divisibility, v ⪯ w if w = v+ a for some a ∈ Nk. This means that v ⪯ w if and only if
each component of w is no less than that of v. We can see immediately that this is a partial order. The
category Nk is Noetherian with respect to this order because (0, . . . ,0) is the least element in Nk.

Definition 6.2 (Graph of rank k). Let k be an nonnegative integer. A graph of rank k (also called a
k-graph) is a countable small category E equipped with a functor d : E→ Nk satisfying the following
axiom:

For all e ∈ E and m,n ∈Nk with d(e) = m+n, there are unique elements u ∈ d−1(m) and v ∈ d−1(n)
such that e = vu.

We often call a graph of rank k a higher-rank graph when k ≥ 2. The functor d in Definition 6.2 is
known as the degree functor and the axiom mentioned is known as the unique factorization property.
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It is easy to see that the category E• is a 1-graph, and the length function l is actually a functor.

Lemma 6.3 (Basic properties of a higher-rank graph). Let E be a k-graph.

(i) d−1(0) = {idv : v ∈ E0}= E0.

(ii) E∗ = E0.

(iii) Let a,b ∈ E. Then a =∗ b if and only if a = b.

Proof. (i) If v ∈ E0 then by functoriality of d we have

d(idv) = d(idv idv) = d(idv)+d(idv) = 2d(idv),

so that d(idv) = 0.

Conversely, if u∈ d−1(0) then d(u) = 0= 0+0 and idt(u) u= u= u idd(u). The unique factorization
property implies that u = idt(u) = idd(u).

(ii) We already have that E0 ⊆E∗. Suppose that u∈E∗, then 0 = d(idd(u)) = d(u−1u) = d(u−1)+d(u).
Thus d(u) = d(u−1) = 0 and u = idd(u) ∈ E0 by (i).

(iii) If a =∗ b in E then a = bc for some c ∈ E∗ = E0 by (ii). Then we must have c = idd(b) and hence
a = b idd(b) = b.

Lemma 6.4 (Strictly order preserving property). The functor d : E→ Nk is strictly order-preserving. In
other words, if e2 ⪯ e1 in E then d(e2)≺ d(e1) in Nk. Moreover, if e2 ≺ e1 in E then d(e2)≺ d(e1) in Nk.

Proof. This is just because of the functoriality of d. If e2 ⪯ e1 in E, then there is an f ∈ E such that
e1 = e2 f . Then d(e1) = d(e2 f ) = d(e2)+ d( f ). Hence d(e2) ⪯ d(e1). If d(e2) = d(e1) then d( f ) is
forced to be 0, which means that f = idd(e2) by Lemma 6.3, so that e1 = e2.

Corollary 6.5. The k-graph E is Noetherian.

Proof. If · · · ≺ e2 ≺ e1 is an infinite strictly decreasing sequence in E, then · · · ≺ d(e2)≺ d(e1) is also an
infinite strictly decreasing sequence in Nk which is impossible.

Now we need to answer the following questions:

(Q1) Why does a higher-rank graph possess the left cancellative property?

(Q2) What can be its Garside family?

(Q3) What do the results obtained in Section 5 mean for higher-rank graphs?

The following proposition gives the answer to the first question (Q1).

Proposition 6.6 (Left cancellativity of higher-rank graphs). Let E be a graph or a higher-rank graph.
Then E is both left and right cancellative.

Proof. Let v,u,w∈E such that vu= vw, we set out to verify that u=w. Actually we have d(vu) = d(v)+
d(u) and d(vw) = d(v)+ d(w). Then the identity d(v)+ d(u) = d(v)+ d(w) with unique factorization
property implies that u = w. This means E is indeed left cancellative. The same argument shows that E
is indeed right cancellative.
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We continue to answer the second question (Q2).
Let Sp := {0,1}k \ {(0, . . . ,0)} be the set k-tuples whose components are only 0 or 1, without the

zero tuple. Note that Sp is a finite subset of Nk. Take G := d−1(Sp). We will soon see that G is indeed a
Garside family of the k-graph E. Beforehand we note that G has the following properties:

- G is =∗-transverse, because by Lemma 6.3 (iii), E itself is already =∗-transverse.

- G is locally bounded, because for any v ∈ E0, if there were an infinite strictly increasing sequence
idv s1 ≺ idv s2 ≺ ·· · in idv G then d(idv s1) ≺ d(idv s2) ⪯ ·· · is an infinite strictly increasing se-
quence in Sp since d(idv si) = d(idv)+ d(si) = d(si) and d(idv) = 0. However, there cannot exist
any infinitely increasing sequence in Sp because the greatest element in it is (1,1, . . . ,1).

- G∩E∗ =∅, because by Lemma 6.3 (i) and (ii), d(E∗) = {0}.

Now we look at the closure G♯ := GE∗∪E∗. Observe that GE∗ = G because GE∗ = GE0 by Lemma
6.3 (i) and e = e idd(e) for every e ∈ E. Hence we can write G♯ = G∪E∗ = G∪E0 and this is a disjoint
union.

Theorem 6.7 (Existence of a (nontrivial) Garside family in a higher-rank graph). Let E be a k-graph.
Then G := d−1(Sp) is indeed a Garside family of E.

Proof. For the sake of convenience, we use Corollary 4.7 as an equivalent definition of greediness.
Let e be an element of E. If e ∈ E∗, then e itself forms a G-normal path. Thus we focus on the case

when e is not invertible.
Firstly, we write d(e) = (a1, . . . ,ak). and we take b1 = (b(1)1 , . . . ,b(1)k ), where

b(1)i :=

{
1, if ai ̸= 0,

0, if ai = 0.
i = 1, . . . ,k.

Secondly, we write d(e)−b1 = (a1−b(1)1 , . . . ,ak−b(1)k ) and we take b2 = (b(2)1 , . . . ,b(2)k ), where

b(2)i :=

{
1, if ai−b(1)i ̸= 0,

0, if ai−b(1)i = 0.
i = 1, . . . ,k.

Inductively, for a general m-th step, where 2 ≤ m ≤ k, we consider the tuple d(e)− b1−·· ·− bm−1

and take bm = (b(m)
1 , . . . ,b(m)

k ), where

b(m)
i :=

{
1, if ai−b(1)i −·· ·−b(m)

i ̸= 0,

0, if ai−b(1)i −·· ·−b(m)
i = 0.

i = 1, . . . ,k.

By construction, we can write d(e) = b1 + · · ·+ bk. The unique factorization property implies that
e can be written uniquely as a product e = g1 · · ·gk in E such that each d(gi) = bi, i = 1, . . . ,k. Now,
each gi lies in G ⊆ G♯ because d(gi) = bi ∈ Sp. It remains to show that the path g1| · · · |gp is G-greedy.
For any q and r with 1 ≤ q < r ≤ k, suppose we have a relation s ⪯ gq · · ·gr with s ∈ G, then d(s) ⪯
d(gq)+ · · ·+ d(gr) = bq + · · ·+ br and we indeed have that d(s) ⪯ d(gq) because by construction, bq is
the largest element among all the elements in Sp which is no greater than d(e)− b1− ·· ·− bq−1 at the
q-th step. The functoriality of d and the unique factorization property imply that s ⪯ gq, proving that
g1| · · · |gp is indeed G-greedy.

It is the right time for us to answer the third question (Q3). In the beginning, we give a sufficient
condition for the finite alignment of a higher-rank graph.
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Lemma 6.8. Let E be a k-graph. If the set idv d−1(n) is a finite set for each v ∈ E0 and each n ∈ Nk,
then E is finitely aligned. In this case, the Garside family G is also locally finite.

Proof. Let v ∈ E0 and n ∈ Nk be given. Then idv d−1(n) = {u ∈ E : t(u) = v and d(u) = n} is always
finite.

By Lemma 1.55 and Lemma 6.3 (iii), it suffices to verify that for every two elements a,b ∈ E the set
of all minimal common right multiples mcm(a,b) is a finite set. Let c ∈mcm(a,b), then by Lemma 6.4
d(c) is a larger than d(a) and d(b) but minimal with respect to⪯ in Nk. If we write d(a) = (n(a)1 , . . . ,n(a)k )

and d(b) = (n(b)1 , . . . ,n(b)k ), then the minimality of c also implies the minimality of d(c), so we have that

d(c) =
(

max{n(a)1 ,n(b)1 }, . . . ,max{n(a)k ,n(b)k }
)
.

Moreover, t(c) = t(a) = t(b) because c = aa′ = bb′ for some a′,b′ ∈ C. Therefore, by assumption, such
c’s can only be finitely many, so mcm(a,b) is a finite set.

G is locally finite because we note that for any v ∈ E0,

idv G = idv d−1(Sp) = idv
⋃

n∈Sp

d−1(n) =
⋃

n∈Sp

idv d−1(n)

which is a finite union of finite sets, hence also finite.

For a directed graph E•, local finiteness of G means that for every vertex v ∈ E0, there are only
finitely many edges (paths of length 1) with the common target v. This is also known as row finiteness
of E•.

Proposition 6.9 (Characterization of greediness of G⊆ E). Let G be the Garside family in a k-graph E
defined above. Given s, t ∈G, with t(t) = d(s), the length two path s|t is G-greedy (and thus G-normal)
if and only if d(t)⪯ d(s).

Proof. We still use Corollary 4.7 as a definition of greediness.
By functoriality of d, we have that d(st) = d(s)+ d(t) = d(t)+ d(s). Then from the unique factor-

ization property, there is a unique u ∈ E with d(u) = d(t) and a unique v ∈ E with d(v) = d(s) such that
st = uv. Now since the path s|t is greedy, and u⪯ uv = st, then u⪯ s so that d(t) = d(u)⪯ d(s).

Suppose conversely that for s, t ∈G with t(t) = d(s) we have d(t)⪯ d(s). Consider the relation f ⪯ st
with f ∈G. By Lemma 6.4, d( f )⪯ d(st) = d(s)+d(t) with d( f ),d(s) and d( f ) being nonzero k-tuples
whose components are only 0 or 1. Since d(t)⪯ d(s), d(s) has a 1 at each component where d(t) has a 1,
and there may be more 1’s in d(s). Since d( f )⪯ d(s)+d(t), the nonzero component of d(s)+d(t) must
come from d(s). The largest possible candidate for d( f ) with respect to ⪯ is the tuple with 1’s at which
the corresponding components of d(s)+d(t) is nonzero, which is precisely d(s). Thus d( f )⪯ d(s), and
by the unique factorization property we have that f ⪯ s, proving that s|t is indeed G-greedy.

Proposition 6.10 (Characterization of an atom in G). Let G be the Garside family in a k-graph E defined
above. Then every atom is an element of G. An element a ∈G is an atom if and only if d(a) is one of the
standard basis elements of Nk.

This is because each atom is minimal with respect to ⪯ among G, each standard basis element is
minimal among Sp, and the functor d preserves order.

Lemma 6.11 (Characterization of admissible pairs, H-invariance and max∞
⪯-closeness in a higher-rank

graph). Let E be a graph or a higher-rank graph with the Garside family G defined above. Let I be a
subfamily of G and D be a subfamily of E0.
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• The pair (I,D) is admissible if and only if
(A) for every t ∈ I there exists a t ′ ∈ I with d(t ′)⪯ d(t) or d(t) ∈ D.

• (I,D) is H-invariant if and only if
(I) for every t ∈ I∪D and every atom a with d(a) = t(t) if d(a)⪯̸ d(t) then at ∈ I, and if d(a)⪯ d(t)
and t = rs with d(s) = d(a) then ar ∈ I.

• (I,D) is max∞
⪯-closed if and only if

(C) for every sequence {azi}i with a fixed a ∈ G∪E0 and d(zi) = d ∈ Nk a constant tuple, if
whenever e ⪯ d is a standard basis element of Nk and si ⪯ zi satisfies d(si) = e we must have
si ̸= s j for all i ̸= j, then a ∈ I∪D.

Proof sketch. The first item follows directly from Proposition 6.9.
For the second item, we note that in any case, the product at ∈G, hence H(at) = at ∈G, where a is

an atom in G.
For the third item, we have a⪯ azi for all i, and if r ⪯ azi for all i, then r ⪯ a.

Now, we recall the following important theorem.

Theorem 6.12 (Farthing et al. [3], Theorem 6.9). The transformation groupoid of a higher-rank graph
E is a groupoid model for the Toeplitz-Cuntz-Kriger algebra T C∗(E) of E.

Summing up the results we obtained, we have the following conclusion of higher-rank graphs with
the specific Garside family.

Theorem 6.13 (Li [5], Corollary 7.2). Let E be a countable finitely aligned higher-rank graph, with the
Garside family G := d−1(Sp) and let Il ⋉Ω be the corresponding transformation groupoid. Then Il ⋉Ω

is the groupoid model for the Toeplitz-Cuntz-Kriger algebra of E, and there is an inclusion preserving
one-to-one correspondence:

{(Il ⋉Ω)-invariant closed subspaces of Ω} −→ {pairs satisfying conditions (A), (I) and (C)}
X 7−→ (I(X),D(X))

X(I,D)←−[ (I,D)

with I⊆G and D⊆ C0.
If further G is locally finite, then the condition (C) can be removed.
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